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A B S T R A C T

With the rapid development of single-cell RNA-sequencing techniques, various computational methods and tools 
were proposed to analyze these high-throughput data, which led to an accelerated reveal of potential biological 
information. As one of the core steps of single-cell transcriptome data analysis, clustering plays a crucial role in 
identifying cell types and interpreting cellular heterogeneity. However, the results generated by different clus-
tering methods showed distinguishing, and those unstable partitions can affect the accuracy of the analysis to a 
certain extent. To overcome this challenge and obtain more accurate results, currently clustering ensemble is 
frequently applied to cluster analysis of single-cell transcriptome datasets, and the results generated by all 
clustering ensembles are nearly more reliable than those from most of the single clustering partitions. In this 
review, we summarize applications and challenges of the clustering ensemble method in single-cell tran-
scriptome data analysis, and provide constructive thoughts and references for researchers in this field.   

1. Introduction

Single-cell RNA sequencing (scRNA-seq) is a high-throughput
experimental technique that uses RNA sequencing to quantify gene 
expression profiles of specific cell populations at the single-cell level 
[1–3]. In contrast to traditional RNA sequencing, scRNA-seq technology 
can depict the unique gene expression patterns of individual cells in 
tissues and cell suspensions, reflecting the cellular heterogeneity of the 
population [4]. Currently scRNA-seq technology is widely used in many 
life sciences areas, particularly in identifying cell types [5], tumor het-
erogeneity [6], cellular immune microenvironment [7], cell lineage 
analysis [8,9] and spatial reprogramming [10]. In recent years, a large 
amount of single-cell transcriptome data has been accumulated due to 
the continuous development and popularity of single-cell sequencing 
technologies. At the same time, computational methods for mining the 
potential information in single-cell transcriptome data are also attract-
ing more and more attention [11–13]. In 2019, Malte & Fabian sum-
marized the classical single-cell analysis workflow which mainly 
contains data preprocessing and downstream analysis. Similar to other 
omics [14,15], the data preprocessing for scRNA-seqing is also sub-
divided into quality control, normalization [16,17], data correction 

[18], feature selection [19,20] and dimensionality reduction [21]. 
Previous studies confirmed the growing role of data analysis techniques 
in uncovering biological knowledge or information underlying 
single-cell transcriptional datasets [22]. Currently, many different bio-
informatics algorithms, software, or tools are used in various steps of 
single-cell transcriptome data analysis [23]. 

As an unsupervised machine learning method, clustering is often 
applied upstream of single-cell transcriptome data analysis [24]. One of 
the core analyses of single-cell transcriptome data is to cluster individual 
cells into different cell clusters for identifying cell types, subtypes (or 
subgroups), and inferring cell lineages based on the relationship be-
tween these cell clusters [25,26]. Clustering methods can be used pre-
cisely to help identify cell types by comparing single-cell gene 
expression profiles without prior knowledge. These data-driven methods 
have also been utilized in many large bioinformatics projects or atlas 
[27–29]. Clustering plays a crucial role in the analysis and mining of 
single-cell transcriptome data, and the results can primarily affect 
downstream analysis [30]. 

At present, many traditional clustering algorithms applied to bulk- 
tissue transcriptome data have been introduced to the field of single- 
cell transcriptomics, such as hierarchical clustering, k-means, self- 
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organized maps (SOM), graph-based clustering, model-based clustering 
[31,32] and density-based clustering [33]. Meanwhile, many single-cell 
clustering algorithms based on machine learning and deep learning have 
become popular and occur frequently in the field of single-cell tran-
scriptomics analysis [25]. Researchers have combined these clustering 
algorithms with dimensionality reduction strategies for cell type iden-
tification or cell subtype determination, which has extensively promoted 
the development of single-cell transcriptomics. Nevertheless, problems 
still need to be solved in this field. In particular, these clustering algo-
rithms still have unstable clustering effects on single-cell transcriptome 
datasets with high dropouts or noise [34,35]. For instance, as one of the 
most popular unsupervised clustering algorithms with low complexity, 
k-means is more suitable for single-cell transcriptome data which are 
concentrated in space. However, k-means clustering algorithm fails to 
give good results when the dataset contains outliers, which makes 
k-means unsuitable for non-convex datasets. Clustering algorithmic 
choice is driven by factors, such as random initializations, choice of 
hyper-parameters and features used in clustering, which results in low 
robustness of each clustering partition. Robustness is also one of the 
most common pitfalls in clustering single-cell transcriptome data today 
[35]. 

Ensemble learning is a powerful machine learning paradigm that has 
emerged recently [36,37]. It aims to combine the bias and/or variance of 
multiple "weak learners" to form a "strong learner" (or "ensemble 
model") to acquire the better predictive performance [37,38]. Nowa-
days, the ensemble learning strategy has been used in many sections of 
single-cell transcriptome data analysis, such as dropouts imputation 
[39–42], dimensionality reduction [43–46], cell annotation [47], tra-
jectory inference [48,49] and cell deconvolution [50,51]. Building a 
clustering ensemble framework that can generate and integrate different 
base clustering partitions is considered one of the most popular and 
effective strategies in single-cell transcriptomics to obtain a more ac-
curate and stable clustering result [52,53]. 

Herein, we systematically reviewed and summarized the clustering 
ensemble strategies currently applied to single-cell transcriptome data 
analysis through a large amount of literature research and conducted a 
comprehensive introduction from three aspects: principle, application, 
and challenges, which aimed to provide reference experience and 
guidelines for researchers in this field. 

2. Clustering ensemble 

A typical single-cell transcriptome dataset (i.e., single-cell gene 
expression profile) usually records the expression level data of many 
genes in hundreds of cells. Assuming that a given single-cell transcrip-
tion dataset D contains n cells, the expression levels of m genes in each 
cell are quantified. The matrix below shows the complete single-cell 
gene expression profile, with each row and column representing a cell 
and a gene feature, respectively. 

D=

⎡

⎢
⎢
⎣

g11 g12 ⋯ g1n
g21 g22 ⋯ g2n
⋮ ⋮ ⋱ ⋮

gm1 gm2 ⋯ gmn

⎤

⎥
⎥
⎦

In scRNA-seq data analysis, all cells are often divided into k non- 
overlapping clusters using a specific clustering algorithm to determine 
the types and characteristics of cells (i.e., columns in gene expression 
matrix). 

The clustering ensemble, also known as consensus ensemble or 
clustering aggregation, aims to recover the natural groups of cells with 
the knowledge reuse of labels from a set of partitions [54,55]. The issue 
to be solved by clustering ensemble is to integrate multiple base clus-
tering results (i.e., base partitions) into a final clustering result, as shown 
in Fig. 1. So far, many different clustering ensemble methods or 
frameworks have been proposed by researchers and applied to the field 
of single-cell transcriptomics, such as cola [56], scEFCS [57], SC3 [58] 
and SHARP [59]. Although these several kinds of frameworks focus on 
distinct science issues and have different emphases, the key principles 
and core issues of how to generate and integrate a large number of 
clustering partitions/models are consistent in order that researchers can 
get a stable and accurate result eventually. 

3. Generation of multiple clustering partitions 

How to generate a large number of different clustering partitions/ 
models is the first core issue for all clustering ensemble strategies. From 
this perspective, the clustering ensemble methods and frameworks 
currently applied in single-cell transcriptomics could be grouped into 
three categories: gene-oriented methods, cell-oriented methods, and 
different algorithm-oriented strategies (as shown in Fig. 2). Meanwhile, 
both advantages and disadvantages of them are presented in Table 1. 

3.1. Gene-oriented approaches 

One way to generate multiple clustering results is to form multiple 
subsets of data by disassembling or combining gene features of the 
dataset and then performing clustering on this basis to obtain multiple 
clustering results. These subsets contain the same cells as the original 
dataset, but the difference is that only a part of the gene features is 
included in a given sub-dataset. Gene-oriented (i.e., feature-oriented) 
approach consists of two main categories, random sampling and gene 
ranking. 

3.1.1. Random sampling 
The most commonly used method to generate base clustering parti-

tions is to randomly select a certain number of gene features from the 
gene expression matrix, aiming at forming a subset of data containing 
part of the original gene information. By repeatedly sampling many 
times, a series of sub-datasets will be generated, and on this basis, 
subsequent cluster analysis will be performed. Considering the effect on 
the subsequent analysis, here, the gene expression matrix preprocessed 
by dimensionality reduction is usually used so that the essential genes 
remain in the dataset. For the Cola method, it obtains preprocessed data 
by feature selection before generating multiple clustering partitions 
[56], and in the sampling process, it provides an option to choose 
whether to sample genes or cells according to the user’s needs. Similar to 
a random sampling of genes, sampling of cells is also a significant 
strategy, which will be discussed in section 3.2. 

Fig. 1. The generic framework for clustering ensemble.  
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3.1.2. Gene ranking 
According to a pre-defined criterion, sorting gene features to obtain a 

subset of single-cell expression profile data is another commonly used 
strategy. The subset of data containing partial gene features can also be 
considered as the product of the raw data after dimensionality reduc-
tion. After the raw data’s dimensionality reduction, the remaining or 
generated features are sorted in descending order of variability. Since 
each feature contributes unequally to the final result, the top-ranked 

features with high values often tend to be reserved as low-dimensional 
input data for subsequent analysis. For high-dimensional single-cell 
transcriptome data, dimensionality reduction allows information 
masked in the high dimension to be revealed in the lower dimension. 
However, dimensionality reduction also brings some new troubles. Due 
to the deletion of partial information structure, dimensionality reduc-
tion will also increase the risk of losing important information from 
datasets. To fill this gap, combining multiple dimensionality reduction 
methods is often recommended as an optimized solution [33]. In prac-
tice, using different dimensionality reduction methods can generate 
multiple sub-datasets. The clustering results obtained from these 
sub-datasets are eventually integrated into a final clustering result, 
compensating for the drawback of using a particular dimensionality 
reduction method alone. Next, the description will be expanded from 
different dimensionality reduction methods. 

As one of the distinctive dimensionality reduction methods, feature 
selection eliminates the less variable genes and retaining the more 
variable genes for clustering analysis. It firstly calculates values that 
reflect the degree of variation for each feature gene, such as standard 
deviation, variance, and coefficient of variation. Then, the genes are 
sorted in descending order based on these index values. The top-ranked 
ones are continuously taken from the sorted genes according to a specific 
ratio to obtain multiple sub-datasets. Cui et al. quantified the standard 
deviation for each gene and ranked the genes from largest to smallest 
according to the variance value. For the sorted matrix, a set of top- 
ranked gene subsets were taken to form the sub-matrix for subsequent 
analysis [60]. On the choice of the number of highly variable genes, the 
author also puts forward corresponding suggestions: 50, 100, 150, 200 
and 250 are sequentially recommended as the numbers of highly vari-
able genes when the dimension of the dataset is less than 8000, while 
200, 400, 600, 800 and 1000 are sequentially recommended as the 
numbers of highly variable genes when the data dimension exceeds 
12000. Bian et al. screened 5000 significant genes in advance by 
establishing a non-negative kernel autoencoder. Subsequently, four 
unsupervised feature selection methods were added to further remove 
less variable genes, including Low-Variance, Laplacian Score, SPEC, and 

Fig. 2. Three strategies for generating multiple clustering partitions.  

Table 1 
Advantages and disadvantages of three strategies used to generate multiple 
clustering partitions.  

Strategies Advantages Disadvantages 

Gene-oriented 
approaches 

For high-dimensional datasets, 
it is useful to retain a subset of 
genes and eliminate a large 
number of unnecessary 
features, which can 
significantly reduce 
computational consumption 
and facilitate the visualization 
of results. 

Only a part of genes observed 
in each base clustering 
partition which may leads to 
quite important information 
loss, so that the accuracy of the 
final clustering result is 
reduced. 

Cell-oriented 
approaches 

For individual cells, all gene 
features are involved in the 
subsequent clustering analysis 
with no information missing. 

Unlike gene-oriented 
approaches, sub-datasets 
produced by cell-oriented 
approaches are more different 
from the original data. To 
obtain a reliable and accurate 
result, it should increase the 
iterations which may take up a 
lot of computational resources. 

Algorithm- 
oriented 
approaches 

Compared with the original 
dataset, the input datasets 
have the same number of cells 
and genes. It is often used to 
investigate the influence of 
factors related to clustering, 
which is irrelevant to the 
original data itself. 

Compared with gene-oriented 
approaches, each input dataset 
has more dimensions and thus 
needs to consume more 
computational resources.  
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MCFS. Therefore, in the scEFCS framework, a total of 5 feature subsets 
are used for subsequent analysis [57]. 

Feature extraction is one of the primary dimensionality reduction 
methods for high-dimensional single-cell expression profiles. Unlike 
feature selection, classical feature extraction techniques (e.g., principal 
component analysis) generates "new components" that combine multiple 
gene features. The biological meaning underlying these "new compo-
nents" (i.e., "principal components") has yet to discover. However, this 
doesn’t mean these "new principal components" are meaningless abso-
lutely. In practical research, to fully use all of the variation information, 
researchers usually choose different sub-dateset composed of several 
principal components to represent the original dataset. The ANMF-CE 
method proposed by Zhu et al. generates multiple base clustering par-
titions by selecting a set of new dimensions after feature extraction [61]. 
It is noted that, the feature extraction method used here is the adaptive 
total-variation for non-negative matrix factorization algorithm 
(ATV-NMF), which can handle missing values, noise, and arbitrarily 
shaped clusters. 

Drastically different from other dimensionality reduction methods, 
random projection (RP) does not need to compute the distance or sim-
ilarity between cells or "new components", which reduces the running 
time and cost and ensures with high probability that the low- 
dimensional data has similar variation information as the high- 
dimensional data. SHARP is a representative clustering ensemble 
framework based on the random RP method. It continuously performs 
RP on the matrix to obtain multiple low dimensional datasets, which will 
replace the original dataset for hierarchical clustering to obtain multiple 
different clustering partitions [59]. 

Autoencoder is one of the most prevalent neural network models, 
and it works by extracting linear or nonlinear features from raw data. 
Many types of autoencoders (AEs) have been effectively used to capture 
low-dimensional information from high-dimensional scRNA-Seq data. 
For example, the scIAE method proposed by Yin et al. divided the single- 
cell expression profile into the training set and test set, and then per-
formed RP individually to yield multiple subsets of the original data 
[62]. 

3.2. Cell-oriented approaches 

Another strategy is to disassemble or combine single-cell data to 
form multiple sub-datasets (i.e., subspace) and analyze them to generate 
multi-clustering partitions. It should be emphasized that the sub- 
datasets produced by the strategy described above differ from the 
original data matrix significantly. The gene features in these sub- 
matrices are the same, and the sole distinction among them is cell 
samples (Fig. 2). The clustering ensemble workflow proposed by Risso 
et al., allows users to choose to sample the cells randomly [63]. The 
clustering ensemble framework Cola proposed by Gu et al. is to 
continuously repeat the process of random sampling and re-clustering of 
genes or cells finally forms a stable clustering result [56]. Compared 
with the method of sampling genes, the clustering results of sub-datasets 
obtained by sampling cells are more credible [56]. 

Although the random sampling method can quickly generate a large 
number of sub-datasets, it is difficult to build a sub-dataset completely 
standing for the original dataset. In order to obtain a stable result and 
increase the number of sampling iterations as much as possible, a 
random stratified sampling strategy for the original single-cell expres-
sion profile data set can also be used. Unfortunately, the above methods 
often lead to excessive computational consumption when processing 
large scRNA-seq datasets [64]. Subsequently, Ringeling and Canzar 
proposed a new approach (i.e., RC approach) to choose cells. It first 
extracts a portion of cells uniformly at random, and then clustering those 
selected cells using k-means to obtain cells that can fully represent the 
entire original dataset [64]. Hu et al. also proposed a similar strategy. 
The difference from the RC approach is that the center of each cluster by 
k-means is regarded as the representative cell in Hu’s method [65]. 

For the sub-datasets formed by randomly sampling a part of cells 
from the original dataset, it exists a risk of partial information overlap. 
To address this, the SHARP algorithm provides an alternative way of 
sampling cells by dividing the large dataset into multiple blocks equally 
in advance, which can maximize the use of computational resources, 
avoids memory overflow, and minimizes the impact of sample imbal-
ance [59]. 

3.3. Algorithm-oriented approaches 

Both gene-oriented and cell-oriented approaches to generate sub- 
datasets of single-cell expression profiles could lose part of the orig-
inal data information to varying degrees. In contrast to the first two 
approaches, using different options including distance metrics and 
clustering algorithms for the original dataset can incorporate all the 
matrix’s information into the calculation, but also generate a set of 
clustering results in the context of different algorithms. When per-
forming cluster analysis of single-cell transcriptome data, there are two 
non-unique requirements for algorithms: one is the algorithm for 
measuring the distance/similarity between cells, and the other is the 
algorithm for grouping cells. 

3.3.1. Distance/similarity measures 
The partitioning clustering algorithm is crucial to measure the dis-

tance or similarity between cells [66]. There are many common in-
dicators to measure the distance between cells, such as Euclidean 
distance, Manhattan distance, Mahalanobis distance and Minkowski 
distance. In addition, the distance between cells can also be indirectly 
quantified by the similarity between cells. The higher the similarity 
between cells, the closer the distance is. Therefore, some commonly used 
similarity measures (e.g., Pearson and Spearman correlation coefficient) 
are also taken into account. Multiple cell-to-cell covariance matrices can 
be generated by employing a series of different distance or similarity 
metrics. Correspondingly, the same number of multiple clustering par-
titions are also produced using a specific clustering algorithm (Fig. 2). 
Since each distance or similarity metric focuses on different character-
istics and emphasis of the input data matrix, the final clustering result by 
integrating multiple partitions generated by different algorithms should 
be more robust and credible. 

Based on this strategy, Kiselev et al. proposed a consensus clustering 
method for single-cell data analysis named single-cell consensus clus-
tering (SC3) [58]. For SC3 framework, it provides three popular distance 
and similarity indicators including Euclidean distance, Pearson and 
Spearman correlation coefficient, to obtain more stable clustering par-
titions [58]. In addition, the framework proposed by Wang et al. intro-
duced four distance or similarity metrics. Apart from the three ones 
mentioned above, consensus distance was brought in Ref. [62]. 

3.3.2. Clustering algorithms 
In the process of clustering, it has always been a rigorous challenge 

for researchers to accurately group cells into distinct clusters. Using 
various clustering algorithms for single-cell transcriptome data may 
usually lead to inconsistent clustering partitions, the so-called prefer-
ence of clustering algorithms. Application of different clustering algo-
rithms on a given dataset can generate a large number of base clustering 
partitions, on which the integration of these partitions will produce a 
more reliable clustering result. 

Taking scEFCS as an example, it offered nine built-in clustering al-
gorithms or software packages commonly used in single-cell tran-
scriptomics, including SC3, Monocle, CIDR, pcaReduce, Rphenograph, 
Seurat, SHARP, SINCERA, and RaceID [57]. For the ECBN framework, 
four popular clustering algorithms or packages suitable for normalized 
datasets are embedded, containing CIDR, Seurat, SC3 and t-SNE +
k-means [67]. The GeoWaVe proposed by Burton et al. supports five 
popular clustering algorithms [68], including FlowSOM [69], PHATE 
with k-means clustering [70], SPADE [71], Phenograph [72] and PARC 

X. Nie et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 159 (2023) 106939

5

[73]. 

3.4. Other approaches 

In addition to the three methods mentioned above, there are other 
strategies applied in integrated clustering, such as using different 
parameter choices. Also, the Landmark-based spectral clustering (LCS) 
ensemble algorithm is one of the typical representatives, which produces 
different clustering partitions by varying the number of selected cells 
and kernel bandwidths to achieve clustering ensemble [64]. 

4. Aggregation of multiple clustering partitions 

4.1. Voting strategy 

A widely used voting strategy is considered the most straightforward 
and effective solution to obtain a final result from many base clustering 
partitions, as shown in Fig. 3. As an easy-to-use method, the principle of 
majority rule (i.e., voting) makes the final clustering result stable and 
representative of most base clustering partitions. It is worth noting that a 
set of base clustering partitions are required as input to produce a more 
accurate clustering result, which may lead to high computational costs. 
Compared to other strategies, the advantages and disadvantages of 
voting strategy is exhibited in Table 2. 

4.2. Hypergraph-based strategy 

The graph is a diagram representing a system of connections and a 
topological structure demonstrating the relationship between data 
points. Generally, a graph is usually represented by G (V, E), where V 
and E represent the included vertices and edges, respectively. A hyper-
graph is a generalization of a graph in which edges can connect any 
number of vertices and is usually represented by H (V, E). Unlike a 
graph, a hyperedge represents the relationship connecting more than 
two vertices. 

Considering the characteristics of hypergraphs, data clustering par-
titions are more suitable to be represented by hypergraphs (the advan-

tages of Hypergraph-based method as shown in Table 2), and the cluster 
labels can be converted into appropriate hyperedges. The clustering 
partition pi constructs a binary matrix with rows and columns repre-
senting cells (vertices) and clusters (hyperedges). The entries in the 
matrix are denoted by vjk, representing the value of the j-th row under 
the k-th hypergraph. The labels of the cells should satisfy the following 
rules: 

vik =

{
1，the ithcell ∈ the kthcluster
0，the ithcell ∕∈ the kthcluster  

In the binary matrix, Hyperedge elements are assigned the value of 1 if 
the cell belongs to the specific cluster and a value of 0 otherwise. Based 
on this, each cluster of the clustering result is mapped to a hyperedge, 
and the entire clustering result is mapped to a hypergraph. Finally, the 
hypergraphs transformed from a set of clustering partitions can be 
combined into a large hypergraph to realize the integration of the 
clustering partitions. There are three classic graph-based integration 

Fig. 3. The voting-based aggregation strategy.  

Table 2 
Advantages and disadvantages of two strategies used to combine multiple base 
partitions.  

Strategies Advantages Disadvantages 

Voting Among all the base clustering 
partitions, voting selects the 
one that can best represent the 
whole base clustering 
partitions as the final result, 
which is the most direct and 
effective approach. 

The more base clustering 
partitions that participate in 
voting, the more accurate the 
final clustering result will be. 
Therefore, it needs to consume 
a large amount of 
computational resources. 

Hypergraph- 
based 
method 

Hypergraph-based strategy 
allows for a more flexible 
representation of relationships 
between data points, which is 
useful for integrating multiple 
base clustering partitions. 

As the number of vertices and 
edges increase, Hypergraph- 
based strategy can become too 
complex to calculate. 
Therefore, it is difficult to 
apply hypergraph-based 
clustering in a large-scale data 
set due to the computational 
complexity.  

X. Nie et al.                                                                                                                                                                                                                                      



Computers in Biology and Medicine 159 (2023) 106939

6

methods, namely Cluster-based Similarity Partitioning Algorithm 
(CSPA, Fig. 4), HyperGraph-Partitioning Algorithm (HGPA, Fig. 5) and 
Meta-CLustering Algorithm (MCLA, Fig. 5) [54]. These three methods 
are all the practicalization of the concept of hypergraph, but the specific 
usage is different. 

4.2.1. Cluster-based similarity partitioning algorithm (CSPA) 
In the CSPA method, for each single clustering result, the similarity is 

defined as 1 if two cells belong to the same cluster (i.e., same cell label) 
and 0 if the opposite is true. Therefore, each base clustering partition can 
be converted into a cell-to-cell binary similarity matrix. When the cells 
in the clustering partition are different, the cells in the binary similarity 
matrix are the union of all cells involved. If a cell is not included in a 
clustering result, all elements related to the cell are defined as 0. Then, 
these similarity matrices are averaged to form a consistency matrix C, 
where Cij represents the probability that cell i and cell j are clustered in a 
cluster. Finally, an appropriate clustering algorithm is selected for ma-
trix C and then clustering analysis is performed to obtain a stable and 
accurate clustering result (Fig. 4). Cui et al. integrated the cell-to-cell 
similarity matrix, and identified accurate cell subgroups consequently 
using the idea of CSPA [60]. In order to strengthen the intra-cluster 
similarity and weaken the interference between clusters, the frame-
work SCENA adopted the local affinity network method to achieve sig-
nificant distinction between clusters by enhancing the affinities of cells 
sharing KNN [60]. The SCENA approach only requires the integration of 
multiple cell-to-cell similarity matrices to obtain the consistency matrix 
and then generates the final clustering result without generating mul-
tiple base clustering results. 

4.2.2. Hypergraph-Partitioning Algorithm (HGPA) 
Different from the CSPA method, the HGPA method chooses to 

repartition the clusters of each clustering result directly. By cutting the 
minimum number of hyperedges, the large hypergraph is divided into 
multiple regions of equal size. HGPA needs to traverse all the cuts as 
much as possible. The partition formed by a cut can be judged as the 
final partitioning result when it satisfies the following two conditions: (i) 
the number of cut hyperedges is minimum. (ii) The clusters formed by 
the cuts should have approximately the same size. All hyperedges and 
vertices have the same weight here. It is worth noting that since the final 
partitioning requires the partitions to be as comparable in size as 
possible, HGPA may not be suitable when the classes within the dataset 
are highly imbalanced. 

The relationship between cells and different clusters only includes 
two cases, 0 and 1, which are idealized for the actual data structure. On 
the contrary, the relationship between cells and different clusters is 
measurable and may not be 0 with a high probability. As a result, too 
many 0 in the hypergraph structure brings hidden dangers to the sub-
sequent analysis. To solve this problem, Lu et al. proposed graph-based 
linking measure (GLM) which redefined the relationship between clus-
ters based on hypergraph and performs k-means on the newly generated 
graph-based linking matrix to obtain a final clustering result [34]. 

4.2.3. Meta-CLustering algorithm (MCLA) 
The MCLA method employs reclustering of clusters from multiple 

base clustering partitions to achieve the final determination of cell la-
bels. Each hyperedge represents a cluster in the large hypergraph. When 
using the MCLA strategy for clustering ensemble, the hyperedges are 
grouped and then refolded, and eventually, the cells can be assigned to 
the closest cluster. As shown in Fig. 5, it can be divided into four steps: 

Fig. 4. The CSPA-based aggregation strategy.  
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(i) Construction of meta-graph. All hyperedges of large hypergraph are 
regarded as vertices of the meta-graph, and the weights of edges are 
proportional to the similarity between two vertices. Therefore, the bi-
nary Jaccard measure is introduced to calculate the weight, as follows: 

ωa,b =
ha ∩ hb

ha ∪ hb  

where ωa,b stands for the weights of the edges between vertex a and 
vertex b, and ha and hb refers to the indicator vectors corresponding to 
vertex a and vertex b, respectively. (ii) They grouped the meta-graph 
into k balanced meta-clusters through a graph-based clustering 
method. Each meta-cluster contains a set of hyperedges. (iii) By 

averaging the hyperedges in each meta-cluster, the meta-clusters are 
folded into meta-hyperedges. The larger the value, the stronger the as-
sociation. (iv) The cells are divided into the meta-cluster with the most 
significant value. 

Traditional clustering ensemble methods usually treat each base 
clustering partition equally. Theoretically, the equal-weight treatment 
may need to be consistent with the actual situation due to various fac-
tors, including datasets containing different cells and genes and algo-
rithms used. Different weights are introduced to examine the 
contribution of each clustering partition to make the final results more 
stable and accurate. Wan et al. proposed Weighted-based meta clus-
tering (wMetaC) for integrating clustering partitions generated by 

Fig. 5. The HGPA-based (left) and MCLA (right) aggregation strategy.  
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random projection, and Similarity-based meta clustering (sMetaC) is 
used to integrate clustering partitions from different data blocks [59]. 
Besides, the scEFCS framework also adopts the wMetaC strategy when 
integrating clustering partitions generated by a combination of five 
feature selection methods and nine clustering algorithms [57]. Thus, 
assigning different weights to each base clustering partition in the 
design of future clustering ensemble frameworks is becoming a signifi-
cant trend and initiative to improve the stability of clustering further. 

5. Summary and conclusions 

Clustering ensemble utilizes ensemble learning techniques to obtain 
a more robust clustering result by merging multiple clustering partitions 
of a dataset. Moreover, for clustering ensemble there is no strict re-
striction on the value of k (i.e., the number of the cluster) for each base 
clustering partition. Currently, ensemble clustering is considered to 
surpass the performance of a single clustering algorithm in many as-
pects, such as robustness, stability, and consistency (definitions of these 
indicators presented in Table S1). However, like a coin has two sides, 
there are still some challenges in applications of Clustering ensemble. 
For example, each base clustering result interprets the data from 
different perspectives, and the heterogeneity between the base clus-
tering results needs further investigation. In addition, the consensus 
function needs further optimization, and the performance of clustering 
ensemble algorithms, particularly the running speed, also needs to be 
enhanced. 

This review systematically reviewed and summarized the current 
status and progress of clustering ensemble frameworks. The clustering 
ensemble method is applied to single-cell transcriptome data analysis 
from both generation and integration of base clustering partitions, 
intending to provide guidelines for researchers in this field (e.g., algo-
rithm developers). On the one hand, a series of data subsets can usually 
be generated using gene-oriented approaches, cell-oriented approaches 
or different algorithms to generate multiple base clustering results. On 
the other hand, to change the clustering results from many to one, the 
voting-based strategy or the graph-based strategy is usually used. 
Strictly speaking, there are both advantages and disadvantages for these 
strategies (as shown in Table 1 and Table 2), and researchers should 
choose an appropriate strategy for analysis according to the actual 
situation. 

For a particular single-cell transcriptome dataset, a single clustering 
produces only a clustering partition, while clustering ensemble can 
generate multiple clustering partitions, which are equivalent to per-
forming multiple single clustering) and then integrate them. Although 
the clustering ensemble algorithms are more computationally time- 
consuming than the single clustering algorithms, it is able to obtain 
significantly better clustering partitions, which is crucial for further 
identification of cell type, cell heterogeneity and cellular immune 
microenvironment, especially cell lineage analysis. It is foreseeable that 
the continuous development and optimization of integrated clustering 
will contribute greatly to the improvement of single-cell transcriptome 
data analysis methods and further promote the prosperity of single-cell 
theory and technologies. In general, one of the primary tasks is to 
appropriately partition the entire cell population into various sub-
populations and accurately determine these cell types in single-cell 
transcriptomics analysis. To acquire more precise cell type informa-
tion, obtaining stable single-cell clustering outcomes from scRNA-seq 
datasets is extremely crucial. Therefore, this review will provide a 
modern outlook on the reliable clustering of single-cell transcriptomics 
data, and deliver some benchmark examples and useful advice for re-
searchers in related fields. 
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