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Abstract: A phylogenetic tree can reflect the evolutionary relationships between species or gene
families, and they play a critical role in modern biological research. In this review, we summarize
common methods for constructing phylogenetic trees, including distance methods, maximum par-
simony, maximum likelihood, Bayesian inference, and tree-integration methods (supermatrix and
supertree). Here we discuss the advantages, shortcomings, and applications of each method and offer
relevant codes to construct phylogenetic trees from molecular data using packages and algorithms
in R. This review aims to provide comprehensive guidance and reference for researchers seeking
to construct phylogenetic trees while also promoting further development and innovation in this
field. By offering a clear and concise overview of the different methods available, we hope to enable
researchers to select the most appropriate approach for their specific research questions and datasets.

Keywords: phylogenetic tree; neighbor-joining method; maximum parsimony method; maximum
likelihood method; Bayesian method; tree integration; R language

1. Introduction

A phylogenetic tree, also known as a cladogram, tree of life, or evolutionary tree, is a
graphical representation resembling a tree that illustrates the evolutionary and phylogenetic
relationships between biological taxa based on their physical or genetic characteristics [1–3].
Comprising nodes and branches, a phylogenetic tree uses nodes to stand for taxonomic
units and branches to depict estimated time relationships between these units [4,5]. As
shown in Figure 1, there exist two types of nodes in a phylogenetic tree: internal nodes
and external nodes (leaf nodes). Internal nodes are hypothetical taxonomic units (HTUs),
with the topmost internal node called the root node, symbolizing the most recent common
ancestor of all leaf nodes, marking the starting point of evolution. External nodes repre-
sent operational taxonomic units (OTUs), typically indicating species but also capable of
representing extinct lineages or fossil endpoints [6,7]. The evolutionary clade within the
phylogenetic tree encompasses a node and all lineages stemming from it. Depending on
the different topological structures, phylogenetic trees can be categorized into rooted trees
and unrooted trees: rooted trees have a root node from which the rest of the tree diverges,
indicating an evolutionary direction. In contrast, unrooted trees lack a root node and only
illustrate relationships between nodes without suggesting any evolutionary direction [8].

The phylogenetic tree visually presents the evolutionary history and phylogenetic
relationships between different taxonomic units, facilitating people’s understanding of the
causes of species’ morphological diversity and evolutionary patterns [9]. On the one hand,
a phylogenetic tree can drive the development of phylogenetic systematics [10]. On the
other hand, it can help reveal patterns such as genetic structure, gene flow, and genetic drift
among populations, providing important clues for population genetics research [11,12].
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Figure 1. The general structure of a phylogenetic tree. The abbreviations in the figure are as fol-
lows: OTU, operational taxonomic unit; HTU, hypothetical taxonomic unit. All figures in this re-
view were drawn by Yue Zou, using Microsoft PowerPoint 2010 and Adobe Illustrator 26.2.1. 

The phylogenetic tree visually presents the evolutionary history and phylogenetic 
relationships between different taxonomic units, facilitating people’s understanding of 
the causes of species’ morphological diversity and evolutionary patterns [9]. On the one 
hand, a phylogenetic tree can drive the development of phylogenetic systematics [10]. 
On the other hand, it can help reveal patterns such as genetic structure, gene flow, and 
genetic drift among populations, providing important clues for population genetics re-
search [11,12].  

2. The Popular Methods for Inferring Phylogenetic Trees 
Before the advent of DNA sequencing technologies, biologists typically relied on 

traditional taxonomic features such as biological morphology and traits to infer phylo-
genetic trees (regarded as species trees). However, with the development of sequencing 
technologies, a large amount of accumulated gene sequences became the basic data for 
inferring species trees [13,14]. Since genes and species often coevolve, they often exhibit 
similar evolutionary patterns, allowing gene trees to be used for inferring species trees 
[15,16]. Figure 2 illustrates the general process of constructing a phylogenetic tree start-
ing from gene sequences, including steps such as sequence collection, sequence align-
ment, model selection, tree inference, and tree evaluation. Typically, researchers first 
collect homologous DNA (or protein) sequences through experiments or public data-
bases (such as GenBank, EMBL, DDBJ) and then perform sequence alignment. Accurate 
alignment results form the basis for inferring evolutionary relationships, and multiple 
methods are commonly used in practice to generate consistent results [17]. It should be 
noted that the aligned sequences need to be precisely trimmed before inferring the tree 
structure to remove unreliable regions that may affect subsequent analysis [18]. Insuffi-
cient trimming may introduce noise, while excessive trimming may remove genuine 
signals that help with phylogenetic analysis [19,20]. Once the sequence alignment is 
completed, researchers then select appropriate algorithms for phylogenetic tree infer-
ence [21]. 

Figure 1. The general structure of a phylogenetic tree. The abbreviations in the figure are as follows:
OTU, operational taxonomic unit; HTU, hypothetical taxonomic unit. All figures in this review were
drawn by Yue Zou, using Microsoft PowerPoint 2010 and Adobe Illustrator 26.2.1.

2. The Popular Methods for Inferring Phylogenetic Trees

Before the advent of DNA sequencing technologies, biologists typically relied on tra-
ditional taxonomic features such as biological morphology and traits to infer phylogenetic
trees (regarded as species trees). However, with the development of sequencing technolo-
gies, a large amount of accumulated gene sequences became the basic data for inferring
species trees [13,14]. Since genes and species often coevolve, they often exhibit similar
evolutionary patterns, allowing gene trees to be used for inferring species trees [15,16].
Figure 2 illustrates the general process of constructing a phylogenetic tree starting from
gene sequences, including steps such as sequence collection, sequence alignment, model
selection, tree inference, and tree evaluation. Typically, researchers first collect homologous
DNA (or protein) sequences through experiments or public databases (such as GenBank,
EMBL, DDBJ) and then perform sequence alignment. Accurate alignment results form the
basis for inferring evolutionary relationships, and multiple methods are commonly used in
practice to generate consistent results [17]. It should be noted that the aligned sequences
need to be precisely trimmed before inferring the tree structure to remove unreliable re-
gions that may affect subsequent analysis [18]. Insufficient trimming may introduce noise,
while excessive trimming may remove genuine signals that help with phylogenetic analy-
sis [19,20]. Once the sequence alignment is completed, researchers then select appropriate
algorithms for phylogenetic tree inference [21].

There are two main categories of methods used for phylogenetic tree inference [22]:
(1) Distance-based methods (such as the NJ method and the UPGMA method) [23]. These
methods first convert the feature matrix into a distance matrix to represent the evolutionary
distances between pairs of species, and then combine clustering algorithms to analyze the
species under study and infer the phylogenetic tree [24]. (2) Character-based methods (such
as the parsimony method and the likelihood method) [25,26]. These methods typically
generate a large number of hypothetical trees based on an algorithm (such as the MP
method, ML method, and BI method) and then induce an optimal tree according to certain
criteria [27]. Among them, the parsimony method has no explicit model assumptions,
while the likelihood method has a specific fixed sequence evolution model and likelihood
function [28]. Distance methods always produce a single evolutionary tree, while parsi-
mony and likelihood methods involve numerous hypothetical trees before producing the
optimal tree. The characteristics of these common tree-building methods are shown in
Table 1.
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Figure 2. The construction workflow of a phylogenetic tree. A classic process used to build the 
evolutionary tree usually contains the following steps: (1) sequence data collection, (2) sequence 
alignment and trimming, (3) model selection and fitting, as well as (4) tree construction and evalu-
ation. The abbreviations in the figure are as follows: DDBJ, DNA Data Bank of Japan; EMBL, Eu-
ropean Molecular Biology Laboratory; NCBI, National Center for Biotechnology Information. 
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Minimal evolution: 
Minimizing the total 
branch length of the 
phylogenetic tree. 

BME branch length estimation
model: Ensuring general sta-
tistical consistency of mini-
mum length phylogeny and 
non-negativity of its branch 
lengths [21]. 

In the end, only one tree 
was constructed. 

Short sequences with 
small evolutionary dis-
tance and few informa-
tive sites. 

MP 

Maximum-parsimony 
criterion: Minimize the 
number of evolution-
ary steps required to 
explain the data set. 

No model required. 

The phylogenetic tree 
with the smallest number 
of base (or amino acid) 
substitutions during 
evolution. 

Sequences with high 
sequence similarity, se-
quences for which it is 
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Figure 2. The construction workflow of a phylogenetic tree. A classic process used to build the
evolutionary tree usually contains the following steps: (1) sequence data collection, (2) sequence
alignment and trimming, (3) model selection and fitting, as well as (4) tree construction and evaluation.
The abbreviations in the figure are as follows: DDBJ, DNA Data Bank of Japan; EMBL, European
Molecular Biology Laboratory; NCBI, National Center for Biotechnology Information.

Table 1. The common algorithms used in phylogenetic tree construction.

Algorithm Principle Hypothesis Criteria for Selecting
the Final Tree Scope of Application

NJ *

Minimal evolution:
Minimizing the total
branch length of the
phylogenetic tree.

BME branch length
estimation model:
Ensuring general statistical
consistency of minimum
length phylogeny and
non-negativity of its
branch lengths [21].

In the end, only one
tree was constructed.

Short sequences with
small evolutionary
distance and few
informative sites.

MP

Maximum-parsimony
criterion: Minimize the
number of evolutionary
steps required to
explain the data set.

No model required.

The phylogenetic tree
with the smallest
number of base (or
amino acid)
substitutions
during evolution.

Sequences with high
sequence similarity,
sequences for which it
is difficult to design
appropriate
characteristic
evolution models.

ML Maximize
likelihood value.

The sites in the alignment
are independent; each
branch is allowed to evolve
at different rates.

Phylogenetic tree with
maximum
likelihood value.

Distantly related and
small number
of sequences.

BI Bayes theorem.

Continuous-time Markov
substitution model:
Substitution probability is
only related to the current
nucleotide and has nothing
to do with past nucleotides.

The most sampled
phylogenetic tree
in MCMC.

A small number
of sequences.

* NJ: a representative method and one of the most popular distance-based methods. The abbreviations in the table
are as follows: NJ, neighbor-joining; MP, maximum parsimony; ML, maximum likelihood; BI, Bayesian inference;
MCMC, Markov chain Monte Carlo.
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2.1. Distance-Based Method

Distance-based methods are the simplest approach for constructing phylogenetic trees.
They transform the molecular feature matrix of different species into a distance matrix
and then use clustering algorithms to classify these species and infer the evolutionary
relationships [29]. Representative methods in this category include neighbor-joining (NJ)
and unweighted pair group method with arithmetic mean (UPGMA) [30]. The NJ method,
created by Naruya Saitou and Masatoshi Nei in 1987, is an agglomerative clustering
algorithm [31]. The tree-building process is illustrated in Figure 3. Firstly, an initial
distance matrix is constructed based on similarity measures between sequences. In practice,
users can choose appropriate distance metrics (such as the Hamming distance, Jaccard
distance, Euclidean distance, and Manhattan distance) according to the characteristics of
the sequence data and the research question. Then, an initial tree for an unrooted star-like
network is created based on the initial matrix. Subsequently, the distance matrix is updated
by merging the two nodes with the smallest distance, and a new node connecting these
two clusters is created in the tree topology. This new node is connected to the central node,
updating the tree topology. This step is repeated until only one cluster remains, resulting
in the NJ tree.

Bioengineering 2024, 11, x FOR PEER REVIEW 4 of 23 
 

evolution models. 

ML 
Maximize likelihood 
value. 

The sites in the alignment are 
independent; each branch is 
allowed to evolve at different 
rates. 

Phylogenetic tree with 
maximum likelihood 
value. 

Distantly related and 
small number of se-
quences. 

BI Bayes theorem. 

Continuous-time Markov 
substitution model: Substitu-
tion probability is only related 
to the current nucleotide and 
has nothing to do with past 
nucleotides. 

The most sampled phy-
logenetic tree in MCMC. 

A small number of se-
quences. 

* NJ: a representative method and one of the most popular distance-based methods. The abbrevia-
tions in the table are as follows: NJ, neighbor-joining; MP, maximum parsimony; ML, maximum 
likelihood; BI, Bayesian inference; MCMC, Markov chain Monte Carlo. 

2.1. Distance-Based Method 
Distance-based methods are the simplest approach for constructing phylogenetic 

trees. They transform the molecular feature matrix of different species into a distance 
matrix and then use clustering algorithms to classify these species and infer the evolu-
tionary relationships [29]. Representative methods in this category include neigh-
bor-joining (NJ) and unweighted pair group method with arithmetic mean (UPGMA) 
[30]. The NJ method, created by Naruya Saitou and Masatoshi Nei in 1987, is an ag-
glomerative clustering algorithm [31]. The tree-building process is illustrated in Figure 3. 
Firstly, an initial distance matrix is constructed based on similarity measures between 
sequences. In practice, users can choose appropriate distance metrics (such as the Ham-
ming distance, Jaccard distance, Euclidean distance, and Manhattan distance) according 
to the characteristics of the sequence data and the research question. Then, an initial tree 
for an unrooted star-like network is created based on the initial matrix. Subsequently, 
the distance matrix is updated by merging the two nodes with the smallest distance, and 
a new node connecting these two clusters is created in the tree topology. This new node 
is connected to the central node, updating the tree topology. This step is repeated until 
only one cluster remains, resulting in the NJ tree.  

 
Figure 3. Fundamentals of the neighbor-joining methods for constructing phylogenetic trees. The 
abbreviations in the figure are as follows: a, b, c, d, e, and f represent different operational taxo-
nomic units, and X, Y, Z, and U represent different hypothetical taxonomic units. 

The NJ method has high accuracy and fewer assumptions when reconstructing 
phylogenetic trees. It also has a faster computation speed. It uses a stepwise construction 
approach to build the evolutionary tree instead of searching for the optimal tree [32,33]. 
As the number of sequences increases, the number of potential topologies to be exam-
ined grows exponentially, making the probability of finding the best tree rapidly de-
crease. At this point, the advantages of the NJ method over the parsimony method and 

Figure 3. Fundamentals of the neighbor-joining methods for constructing phylogenetic trees. The
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units, and X, Y, Z, and U represent different hypothetical taxonomic units.

The NJ method has high accuracy and fewer assumptions when reconstructing phy-
logenetic trees. It also has a faster computation speed. It uses a stepwise construction
approach to build the evolutionary tree instead of searching for the optimal tree [32,33].
As the number of sequences increases, the number of potential topologies to be examined
grows exponentially, making the probability of finding the best tree rapidly decrease. At
this point, the advantages of the NJ method over the parsimony method and likelihood
method become more evident, leading to its wide usage in analyzing large datasets [34].
Additionally, the neighbor-joining method allows for different branch lengths between
sequences and permits multiple substitutions. However, converting sequence differences
into a distance matrix may result in a reduction of sequence information when the sequence
divergence is substantial [35].

2.2. Maximum Parsimony (MP) Method

Maximum parsimony (MP) is a phylogenetic tree reconstruction algorithm based on
the principle of Occam’s razor, aiming to infer the evolutionary tree by minimizing the
number of evolutionary steps required to explain the dataset [36]. This method was pro-
posed by James S. Farris and Walter M. Fitch in 1970–1971 [37,38]. MP primarily considers
informative sites and requires the identification of informative sites in the sequences before
tree construction [39]. Figure 4 illustrates the basic process of constructing an evolutionary
tree using MP. Taking DNA sequences as an example, a site is considered informative if
it has at least two different nucleotides and each nucleotide appears in at least two of the
studied sequences. By using informative sites, all possible tree topologies (constructing the
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tree space) are searched, and the minimum number of nucleotide substitutions for each
topology is counted to obtain the most parsimonious tree. In simple terms, it involves
finding the tree that minimizes the total number of substitutions across all informative
sites. Increasing the number of taxa during tree construction leads to a rapid increase in
the number of possible tree topologies. Therefore, when there are fewer taxa, exhaustive
search algorithms are often used, while branch-and-bound and heuristic search algorithms
are used to improve computational efficiency when there are more taxa [35]. Popular
heuristic algorithms include Subtree Pruning and Regrafting (SPR) and Nearest Neighbor
Interchange (NNI) [40]. MP may result in multiple equally parsimonious trees, so it is
common practice to construct a consensus tree to represent the final result. This is achieved
by treating consistent branch points in all trees as binary branches, converting partially
consistent branch points into internal nodes connecting multiple branches, or selecting the
most frequently occurring branch points among all MP trees [35].
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abbreviations in the figure are as follows: a, b, c, and d represent sequences a, b, c, and d, respectively.

Maximum parsimony is known for its straightforward mathematical approach and
absence of a specific model. It is well suited for data types where designing appropriate
evolutionary models is challenging, such as rare features based on genomic rearrangements or
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unique morphological traits. However, when applied to large datasets, it frequently generates
numerous potential rooted trees, rendering comprehensive comparisons unfeasible [28].

2.3. Maximum Likelihood (ML) Method

Maximum likelihood (ML) was first proposed by Felsenstein in the early 1980s [41].
The main process of constructing an evolutionary tree using this method is shown in
Figure 5.
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breviations in the figure are as follows: JC69, the Jukes and Cantor 1969 model; K80, the Kimura 1980
model; HKY85, the Hasegawa, Kishino, and Yano 1985 model; a, b, and c represent different species.

First, a suitable evolutionary model is selected based on the characteristics of the
sequence data being studied. JC69 [42,43], K80 [44], TN93 [45], HKY85 [46], and GTR [47]
are commonly used evolutionary models for analyzing DNA sequences. The JC69 model
assumes that all nucleotide substitutions occur with equal probability [42,43]. In contrast,
the TN93 model assumes that transitions and transversions occur at different rates, and base
frequencies are estimated from the data [48]. The GTR model assumes that all nucleotides
occur at different frequencies and convert at different rates. Next, a tree space search is
conducted, and optimal substitution parameters and branch lengths for each topology are
optimized based on standard numerical optimization principles to maximize the likelihood
value for each topology [49,50]. Finally, the topology with the highest ML value is selected
as the optimal evolutionary tree. In principle, this step must be repeated for all possible
trees to find the maximum likelihood value, but the number of hypothetical trees with n
taxa increases rapidly with n. This means that exhaustive searches are only suitable for
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phylogenetic inference based on a small number of taxa, and for inference based on more
taxa, tree space searches are usually heuristic [49].

Because likelihood methods have clear model assumptions, the probability of sys-
tematic errors (such as long-branch attraction artifacts) is lower than that of parsimony
methods. However, the complex model settings greatly increase the computational burden.
Maximum likelihood is a statistical method based on evolutionary models. It has advan-
tages such as statistical consistency, robustness, and the ability to compare different trees
and make full use of original data within a statistical framework.

2.4. Bayesian Inference (BI) Method

Bayesian inference (BI) for phylogenetic inference was proposed by Bruce Rannala
and Ziheng Yang in the 1990s [51,52]. Its appearance changed the way people analyze
genomic sequences [53]. Unlike ML methods, Bayesian methods use statistical distributions
to quantify uncertainty in parameters [28]. The main process of tree construction is shown
in Figure 6. First, a suitable evolutionary model is selected for the sequence being studied,
and parameter prior information (such as tree topology and branch length) is reasonably
set based on professional knowledge and experience [54]. Most phylogenetic models use
continuous-time Markov processes (CTMPs) to model nucleotide substitution, which have
an important property called the Markov property: the future state (remaining time before
the next substitution and the character state produced by the next substitution) depends
only on the current state and is independent of the past states [49].
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abbreviations in the figure are as follows: JC69, the Jukes and Cantor 1969 model; K80, the Kimura
1980 model; HKY85, the Hasegawa, Kishino, and Yano 1985 model; MCMC, Markov chain Monte
Carlo; a, b, and c represent different species.

According to Bayes’ theorem, combining the prior information of parameters with
the likelihood of sequence data can obtain posterior information of parameters, i.e., the
posterior probability distribution of parameters. Then, MCMC sampling is conducted:
random samples of parameters are obtained from the posterior probability distribution,
and a phylogenetic tree is constructed based on each sample. This set of samples forms a
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Markov chain, which converges to a stationary distribution that is equal to the posterior
distribution. The most commonly used MCMC algorithms include the Metropolis–Hastings
algorithm [55], Metropolis-coupled MCMC [56], and Larget and Simon’s LOCAL algo-
rithm [57]. The posterior probability distribution of trees can be approximated by the
proportion of times each tree is sampled during MCMC sampling. Similarly, the posterior
probability of a branch can be estimated by the proportion of sample trees that include that
branch [58]. Finally, the topology with the highest posterior probability is selected as the
optimal tree.

The superiority of Bayesian inference lies in its ability to handle large datasets at
a higher computational speed than maximum likelihood methods and to measure the
confidence of trees through posterior probabilities.

3. Advanced Computational Integrative Methods for Inferring Phylogenetic Tree

When constructing phylogenetic trees, some researchers construct trees based on
individual gene (or protein) sequences, while others combine multiple gene (or protein)
sequences to build a phylogenetic tree together [59,60]. For a specific group of species,
phylogenetic trees constructed from individual genes often show inconsistency with each
other [61,62]. As the number of taxa increases, single-gene phylogenetic trees typically have
low statistical support [63]. Studies have reported that when using the same parameters
and the same program, approximately 9% to 18% of single-gene phylogenetic trees cannot
replicate the same topology [64].

Different genes have different evolutionary rates and evolutionary times and contain
varying amounts of informative sites with different resolutions. Combining multiple gene
fragments (loci) for phylogenetic analysis can provide more accurate information and
higher tree resolution compared to analyzing a single gene [65,66], so the combination
of multiple gene sequences has become the mainstream approach in phylogenetic stud-
ies [67]. Currently, there are two main methods for constructing multi-gene phylogenetic
trees: concatenation phylogeny and coalescence phylogeny [28,68]. The prerequisite for
implementing these methods is sequence alignment, and the main processes are shown in
Figures 7 and 8, respectively.
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3.1. Concatenation Phylogeny Method

As shown in Figure 7, concatenation phylogeny, also known as the supermatrix method
or total evidence, is a method of constructing a phylogenetic tree by concatenating different
gene sequences that have been aligned into a supergene matrix [69]. When following the
principle of using all available data (total evidence), the most popular strategy is to use
the standard molecular sequence-based methods to analyze single-gene concatenations
into a “super gene” [70]. Combining multiple gene fragments for phylogenetic analysis
can provide more accurate information than analyzing a single gene and can reveal hidden
phylogenetic information in the data [71]. The supermatrix method fully utilizes all infor-
mation from each dataset and is stable against missing data [72], but implementing this
method requires all genes to have the same set of taxa. In addition, the supermatrix method
usually assumes that all genes have undergone the same evolutionary process, while there
may be lineage sorting during the evolution of species, which can lead to conflicts between
gene trees and species trees [71].

3.2. Coalescence Phylogeny Method

As shown in Figure 8, the coalescence phylogeny method, also known as the supertree
method or separate analysis, first independently analyzes each aligned gene to provide
estimates for single gene trees. These individual subset trees are then integrated into
a single phylogenetic tree to represent the final phylogenetic analysis. The integrated
evolutionary tree will include all taxa from the source data set. Commonly used methods
for integrating trees include the matrix representation with parsimony (MRP) [73,74], strict
consensus [75,76], semi-strict consensus [77,78], and average consensus procedure [79,80],
among which MRP is the most popular.

Unlike the supermatrix method, the supertree method only requires a partial overlap
of taxa between different data sets. In cases of incomplete sampling, the results obtained
from the supertree method are usually superior to those from the supermatrix method [81].
Studies across multiple data sets have shown that multi-species supertree models generally
outperform concatenation models in phylogenetic inference [82]. However, because the
supertree method directly operates on the phylogenetic tree and utilizes tree information
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summarized from various data sets, it often overlooks a significant amount of phylogenetic
information [71].

4. Construction and Evaluation of Phylogenetic Trees in R Language Environment

The construction of phylogenetic trees can be achieved using various methods such
as local software, online tools, and programmable code. Currently popular tree-building
software includes PHYLIP [83], PAUP* [84], PhyML [85], MrBayes [86], MEGA [87], and
Phylosuite [88]. These software packages typically include multiple algorithms, models,
and related analysis functions (such as model comparison and bootstrap analysis), making
it easier for users to perform different types of phylogenetic tree reconstruction and evolu-
tionary analysis. However, due to the preset nature of software functionalities and options,
it is often challenging to meet users’ flexible analysis needs. Processing large datasets with
these software tools can be cumbersome and slow, leading to various inconveniences.

In contrast, scientific programming languages like R and Python provide rich scientific
computing and data analysis libraries. R is an open-source software used for statistical
analysis and graphic plotting [89,90], making it particularly suitable for phylogenetic tree
construction, visualization, and in-depth analysis [91]. With an extensive and vibrant
user community, R fosters a collaborative environment for exchanging support, sharing
experiences, and solving problems among its members. R offers a wide range of packages
tailored for phylogenetic tree construction and analysis, including popular packages such
as ape [92], phangorn [93], and dendextend [94], giving users greater convenience and
flexibility. There is also a wealth of R packages dedicated to algorithm selection, method
exploration, robust data processing, and visualization capabilities. Notable examples
include Treeio [95] and tidytree [96], which facilitate the manipulation of evolutionary trees
and associated data within R. In addition, ggtree [97] and ggplot2 [98] serve to enhance the
visual aesthetics of phylogenetic trees while maintaining their interpretive clarity. Using
the R environment for phylogenetic tree construction allows users to customize parameters
to suit specific research needs.

In addition to R, Python stands out as a powerful tool for performing phylogenetic
analysis, with an extensive set of libraries and tools such as Biopython [99] and Den-
droPy [100] that provide a wide range of functions and algorithms. In addition, Python
provides access to machine learning and deep learning libraries such as scikit-learn [101]
and PyTorch [102], which facilitate effective model building and prediction in phyloge-
netic analysis. By programming automated reconstruction of phylogenetic trees and batch
processing of large datasets, researchers can significantly improve the efficiency of their
analyses. It should be noted that this approach can involve more coding and debug-
ging and requires a certain level of programming skills, which can be a learning curve
for non-experts.

Figure 9 shows the whole procedure for building the phylogenetic trees in the R
environment. In this review, we have selected sixteen model species, including Homo
sapiens (human), Mus musculus (mouse), Rattus norvegicus (rat), Drosophila melanogaster
(fruit fly), Arabidopsis thaliana (thale cress), Saccharomyces cerevisiae (brewer’s yeast), Macaca
mulatta (rhesus monkey), Caenorhabditis elegans (roundworm), Sus scrofa (pig), Bos taurus
(cow), Gallus gallus (chicken), Zea mays (corn), Oryza sativa (rice), Escherichia coli (E. coli),
Glycine max (soybean), and Xenopus laevis (African clawed frog). We will download their
orthologous gene K00927 sequences and use them as examples to construct phylogenetic
trees using the NJ method, MP method, ML method, and BI method.

Firstly, the DNA sequence files of the orthologous gene K00927 for the mentioned
16 model organisms were downloaded from the gene database under NCBI. After sequence
alignment, we use the fasta2DNAbin() function in the R package adegenet [103] to read
alignments with the FASTA format and convert them into DNAbin objects.
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4.1. Implementation of Distance-Based Methods in R

The NJ method can be implemented using relevant functions in the ape package. The
ape package is primarily used for reading, writing, analyzing, and simulating phylogenetic
trees and DNA sequences, calculating DNA distances, translating DNA sequences into
protein sequences, and estimating phylogenetic trees using distance-based methods for
evaluation [92]. Listing 1 exhibits the complete process of building a phylogenetic tree using
the NJ method under the R programming environment. After installing and loading the ape
package, the dist.dna() function is used to generate the distance matrix of DNA sequences.
Users can select the desired molecular evolution model by setting the model parameter,
with the default being the K80 model. Based on this distance matrix (which can contain
missing values), the phylogenetic tree (unrooted tree) is constructed using the njs() function.
The root() function is used to set Escherichia coli (ece) as an outgroup to define the root. To
convert the phylogenetic tree properties to a rooted tree, the parameter r = TRUE needs to be
set. Subsequently, boot.phylo() function is used for bootstrap analysis, visualized using the
plot() function, and bootstrap values are added using the drawSupportOnEdges() function.
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Listing 1. The code for implementation of the neighbor-joining method in R.
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4.2. Implementation of MP Method in R

The R package “phangorn” allows for the estimation of phylogenetic trees and net-
works using maximum likelihood, maximum parsimony, distance-based, and Hadamard
conjugation methods. It also provides methods for tree comparison, model selection, and
visualization of phylogenetic networks [93]. Listing 2 shows the workflow of building a
phylogenetic tree using the MP method under the R environment.

Listing 2. The code for implementation of the maximum parsimony method in R.
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After installing and calling the phangorn package, DNA sequences are converted
from DNAbin format to phydata format using the as.phyDat() function. In this study, the
parsimony ratchet method is applied to search for maximum parsimony (MP) trees using
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the pratchet() function. The minit parameter can be set to determine the minimum number of
iterations, and trace = 0 is used to prevent the current state from being written to the console,
which does not affect the results obtained from this function. Subsequently, branch lengths
are calculated using the acctran() function. As the parsimony ratchet method may produce
multiple MP trees, the unique() function can be used to generate a consensus tree. Finally,
the plotBS() function is used to visualize the consensus tree and add bootstrap values.

4.3. Implementation of ML Method in R

The maximum likelihood method will also be implemented using relevant functions in
the phangorn package. Listing 3 shows the workflow of building a phylogenetic tree using
the ML method under the R environment. After converting DNA sequences from DNAbin
format to phydata format, the modelTest() function is used to perform model testing in
search of the best model. Users can compare evolutionary models by setting the model
parameter. Subsequently, the pml_bb() function is used to infer the maximum likelihood
tree using the ML method. Finally, bootstrap analysis is performed, and the tree topology
is separated from the output results for visualization.

Listing 3. The code for implementation of the maximum likelihood method in R.
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4.4. Implementation of BI Method in R

The R package “babette” is a popular alternative workflow for the Bayesian infer-
ence software BEAST2. It generates posterior distributions for phylogenetic trees and
parameter estimates based on alignment results and inference models [104]. Listing 4
shows the workflow of building a phylogenetic tree using the BI method under the R
environment. After installing and calling the babette package, Bayesian inference can be
directly performed using the bbt_run_from_model() function. The length of the Markov
chain Monte Carlo (MCMC), the number of iterations per tree sample (minimum 1000), and
other settings can be adjusted using the MCMC parameter in the create_inference_model()
function. Subsequently, the hypothesis sample with the highest posterior probability is ex-
tracted as the optimal tree, and posterior probabilities for branches are calculated, followed
by visualization.

4.5. Building the Consensus Phylogenetic Tree Using Multiple Genes in R

For the aforementioned sixteen species we downloaded 10 sets of orthologous genes
(K01939, K03644, K00797, K00826, K00088, K02257, K00164, K00820, K06158, and K00008),
and used them as input data to construct phylogenetic trees via supermatrix and supertree
methods, respectively.

To implement the supermatrix (i.e., concatenation phylogeny method) in the R envi-
ronment (as shown in Listing 5), the apex package and its dependent devtools package
need to be installed first. After aligning the sequences, the FASTA format of these 10 orthol-
ogous genes is converted to DNAbin format, merged into a list, and then transformed into
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multidna format. Subsequently, they are concatenated into a “super gene” matrix, and a
phylogenetic tree is constructed using the maximum likelihood method. The core of the
supermatrix method lies in concatenating different gene sequences end-to-end to form a
complete sequence, which can be understood as combining the sequences of ten genes into
a single gene.

Listing 4. The code for implementation of the Bayesian inference method in R.
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The supertree (i.e., coalescence phylogeny method) is implemented using the phang-
orn package, with the superTree() function being the core function for constructing the
supertree. After constructing all individual gene trees based on the maximum likelihood
method, they are merged into a multiPhylo format. Then the superTree() function is used
to integrate them into a single supertree using the MRP method. The whole procedure
was illustrated in Listing 6. The core of the supertree method lies in integrating different
individual gene trees into a single phylogenetic tree.

Listing 6. The code for implementation of coalescence phylogeny method in R.
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5. Summary and Perspectives

Developing methods for constructing phylogenetic trees for different purposes (such
as theoretical method innovation and faster computing speed) is an important research field.
Phylogenetic trees can intuitively reflect the evolutionary history and relationships among
taxonomic units, helping us understand biodiversity and evolutionary patterns. R lan-
guage is a very powerful statistical analysis and plotting tool, providing many packages for
constructing and analyzing phylogenetic trees. Table 2 lists the common R packages used in
phylogenetic tree construction. This article reviews the methods for constructing phyloge-
netic trees and their implementation in the R environment. Through discussions of distance
methods, maximum parsimony, maximum likelihood, Bayesian inference, and phylogenetic
tree integration methods, and comprehensive analysis of the advantages, disadvantages,
and applicable scenarios of different methods, this article provides a reference basis for
researchers to choose appropriate methods. Meanwhile, by demonstrating how to use R
packages and algorithms to construct phylogenetic trees and providing code examples and
practical cases, readers can better understand and apply the knowledge learned.

It is worth noting that with the rapid increase in high-throughput data such as ge-
nomics and proteomics, the methods for constructing phylogenetic trees also need to be
constantly updated and improved. Currently, new methods are constantly emerging, pro-
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viding research directions for phylogenetic analysis. Fusang, proposed by Wang et al. [22],
is a framework for reconstructing the topology of phylogenetic trees (without calculating
branch lengths) through deep learning methods, aiming to provide an evolvable toolkit for
daily phylogenetic tree inference applications. However, when there are too many species
(>40), the computational efficiency of the current version of Fusang is low, and it currently
only supports amino acid multisequence alignments with fewer than 40 sequences and
sequence lengths below 10,000. Fusang uses an improved stepwise addition algorithm
inspired by Zou et al. [105] to solve variable MSA sequences and uses beam search to find
the best topology based on the probability distribution provided by deep learning. When
there are more insertions and deletions in the multiple sequence alignment, DL performs
better than ML methods because DL adds indel information to greatly improve the accuracy
of phylogenetic inference. The authors have also pushed related Python code on GitHub
for users to use Fusang.

Table 2. The common R packages used in phylogenetic tree construction.

R Package Description Source Reference

ape

Providing both utility functions for reading and writing
data and manipulating phylogenetic trees, as well as several
advanced methods for phylogenetic and
evolutionary analysis.

CRAN * [92]

phangorn

Estimating phylogenetic trees and networks using
maximum likelihood, maximum parsimony, distance
methods, and Hadamard conjugation; offering methods for
tree comparison, model selection, and visualization of
phylogenetic networks.

CRAN * [93]

babette
Providing an alternative workflow to the BEAST2;
conducting complex Bayesian phylogenetics easily and
reproducibly from R.

Github [106]

BAMMtools
Reconstructing and visualizing changes in evolutionary
rates through time and across clades in a Bayesian
statistical framework.

CRAN * [107]

apex Implementing new object classes for storing and handling
multiple genes data. CRAN * [108]

phytools

Concentrating on phylogenetic comparative biology;
including numerous techniques for visualizing, analyzing,
manipulating, reading or writing, and inferring
phylogenetic trees.

CRAN * [109]

ggtree Annotating phylogenetic trees with their associated data of
different types and from various sources. Bioconductor [97]

RPANDA Characterizing and comparing phylogenies using spectral
densities; fitting models of diversification to phylogenies. CRAN * [110]

TreeSearch
Dataset construction and validation; phylogenetic search
(including with inapplicable data); the interrogation of
optimal tree sets.

CRAN * [111]

paleotree
Analyzing the combined paleontological and phylogenetic
data sets, particularly the time-scaling of phylogenetic trees,
which include extinct fossil lineages.

CRAN * [112]

treeman

Containing a new class called TreeMan for representing
phylogenetic trees that has a list structure that allows for
more efficient manipulation of phylogenetic trees;
demonstrating intuitive tree manipulation, both
conceptually and as computationally efficient as possible,
within the R environment.

Github [113]

* CRAN: The Comprehensive R Archive Network.
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ModelRevelator, proposed by Burgstaller-Muehlbacher et al. [114], is a machine learn-
ing method supported by two neural networks (deep learning) for model selection in
phylogenetic inference, which aims to find the best model for sequence evolution and
tends to choose models with fewer parameters. The authors demonstrated that neural
networks can be used for model selection without rebuilding trees, optimizing parameters,
or calculating likelihoods. The first neural network, NNmodelfind, recommends one of
six commonly used sequence evolution models (JC, K2P, F81, HKY, TN93, and GTR). The
second neural network, NNalphafind, provides an estimate of the shape parameter α by
suggesting whether to merge gamma-distributed rate heterogeneity models. The authors
found that using neural networks for phylogenetic estimation slightly improved compared
to ML + BIC and significantly saved computing time depending on the size of the alignment.
Users can use ModelRevelator for phylogenetic analysis through IQ-tree software.

Hyperbolic embedding in phylogenetic analysis embeds the sequences of taxonomic
groups into hyperbolic spaces using hyperbolic geometry models (the hyperboloid model,
Klein disk model, and Poincaré disk model), represented as points, and calculates the
distances between them. Hyperbolic space has negative curvature (negative curvature: the
sum of interior angles of any triangle on the surface is less than π), and its exponential
expansion rate is much greater than that of Euclidean space. Therefore, compared with
Euclidean embedding, hyperbolic embedding more closely matches the geometric shape
of trees [115] and better represents hierarchical structures [116]. However, hyperbolic
embedding is currently significantly more effective than Euclidean embedding only in
low dimensions and loses its advantage in high dimensions [117]. Macaulay et al. [118]
applied hyperbolic embedding to Bayesian phylogenetic analysis, studying the impact
of the curvature (the degree of geometric curvature) and dimension of hyperbolic space
on MCMC chain performance, and concluded that hyperbolic embedding allows tree
search algorithms to propose new states (topology and branch length) from continuous
probability distributions.

New methods of phylogenetic analysis offer distinct advantages over traditional meth-
ods but also present challenges that require further refinement by researchers. Future
investigations should prioritize gaining a comprehensive understanding of current meth-
ods and techniques while critically assessing their limitations, thus providing an essential
context for the integration of innovative approaches. Meeting the growing demand for
large data sets requires the development of more efficient and accurate methods, as well as
deeper investigations into the integration of artificial intelligence and machine learning
technologies into phylogenetic tree construction. Encouragingly, the use of advanced large
language models (LLMs) [119], such as OpenAI’s ChatGPT [120], known for its exceptional
language processing and programming capabilities, offers promising prospects for ad-
vancing phylogenetic research. Continued optimization of existing phylogenetic analysis
methods and exploration of new techniques within the R programming environment will
enable researchers to harness large amounts of data for iterative analysis, resulting in the
construction of more robust and comprehensive phylogenetic trees that accurately reflect
the evolutionary relationships between species. In addition, this approach may facilitate
the identification of minimal orthologous gene sets with whole genome representation.
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