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Abstract

Technological advances enabling massively parallel measurement of 
biological features — such as microarrays, high-throughput sequencing 
and mass spectrometry — have ushered in the omics era, now in its 
third decade. The resulting complex landscape of analytical methods 
has naturally fostered the growth of an omics benchmarking industry. 
Benchmarking refers to the process of objectively comparing and 
evaluating the performance of different computational or analytical 
techniques when processing and analysing large-scale biological 
data sets, such as transcriptomics, proteomics and metabolomics. 
With thousands of omics benchmarking studies published over the 
past 25 years, the field has matured to the point where the foundations 
of benchmarking have been established and well described. However, 
generating meaningful benchmarking data and properly evaluating 
performance in this complex domain remains challenging. In this 
Review, we highlight some common oversights and pitfalls in omics 
benchmarking. We also establish a methodology to bring the issues 
that can be addressed into focus and to be transparent about those that 
cannot: this takes the form of a spreadsheet template of guidelines 
for comprehensive reporting, intended to accompany publications. 
In addition, a survey of recent developments in benchmarking is 
provided as well as specific guidance for commonly encountered 
difficulties.
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(Supplementary File 1). Updates and domain-specific templates will be 
maintained on GitHub, where community contributions are encour-
aged. These reports are intended to aid benchmarkers, reviewers 
and readers. We believe that such reporting will not only document 
the inherent and unavoidable limitations of a benchmark in order 
to improve its interpretation but will also improve the benchmark 
by highlighting avoidable mistakes so that they can be corrected. In 
addition, we give specific guidance on navigating the challenging deci-
sions reported in these forms. Last, we highlight recent developments, 
including benchmarking of new methodologies and the increasing 
number of available benchmarking platforms and software.

Ten steps
Benchmarking analyses can be described in ten steps (Box 2). These 
steps have been described previously and are well established1. Here, an 
emphasis is placed on developing standards of reporting, with the aim 
of revealing common issues, which can then be addressed, if possible, 
or documented in a transparent manner. It is not essential to follow the 
ten steps in strict numerical order, and it will usually be necessary to 
revisit earlier steps when issues arise during later stages. We address 
the various difficulties associated with each step below.

Although it is desirable, it is not realistic to systematize bench-
marking. For example, there is no established method for selecting 
which implementations (referred to as ‘tools’ from here onwards) 
of a given method to include. Rationales for the choice of tool vary 
widely, and two papers benchmarking the same problem will invariably 
address different sets of tools. Although it is difficult to develop and 
achieve community adoption of systematic methods in benchmark-
ing, considerable clarity would be achieved by introducing standards 
of transparency, including comprehensive reporting of choices and 
documentation of rationales. We provide a thorough template as a 
proposed standard for these reports (Fig. 1a and Supplementary File 1).

Throughout this Review, we use a recurring example of the typi-
cal RNA-seq pipeline, which begins with raw data (generated from wet 
bench work and sequencing), followed by read alignment, quanti-
fication, normalization and differential expression analysis. This inten-
tionally does not represent the cutting-edge limits of complexity in 
omics analysis pipelines, but it gives a familiar example that illus-
trates many widely relevant general issues. Benchmarking on more 
recently developed assays presents greater challenges that still rely 
on these principles; Box 3 is a summary of the latest benchmarking 
developments.

Step 1: Scope
The first benchmarking challenge is to balance broadness of scope and 
feasibility of implementation. For example, it is desirable to determine 
broad recommendations for peak calling from chromatin immuno-
precipitation followed by sequencing (ChIP–seq), but transcription 
factor binding versus histone modifications18 are sufficiently different 
applications of ChIP–seq that benchmarking one would not generalize 
well to the other. These could be combined into one publication, but 
each would require their own benchmarking study, addressing each 
of the ten steps separately.

The scope of a benchmark study is also restricted with regard to 
factors such as species, study designs and sample sizes. For example, 
the results of benchmarking on mouse data cannot be assumed to 
generalize to plants or bacteria and would preferably need be justified 
to extend even to other mammals. Ideally, any generalization should 
be supported by multiple data sets sufficient to provide convincing 

Introduction
Omics technologies generate vast amounts of high-dimensional data 
that can be analysed using various computational methods and algo-
rithms to extract meaningful biological information. The accuracy, 
sensitivity, specificity and efficiency of these analytical methods can 
vary substantially depending on the specific questions being asked and 
the input data. By performing rigorous benchmarking — comparing the 
performance of different methods of analysis — researchers can ensure 
that their analysis is based on the most vetted methods available, thus 
improving accuracy and replicability. Benchmarking has several aims, 
including: validating the accuracy and reliability of new computational 
methods and tools prior to their use in the real world; identifying 
the most appropriate methods for specific analytical tasks; clarify-
ing the trade-offs between different methods, such as computational 
efficiency versus accuracy, to enable the most suitable approach to be 
chosen; and tracking progress and identifying areas for improvements 
to drive further methodological developments. Besides comparative 
analyses, benchmarking might also establish a bar that any method 
should reasonably need to clear to be viable for use in practice.

Over the past 25 years, the practice of benchmarking has been 
steadily maturing, with the publication of thousands of omics 
benchmarking studies. At this point, the basic tenets of bench-
marking are established and well described1–3. Moreover, domain- 
specific benchmarking guidelines have been developed, such as 
for RNA secondary structure prediction4, for microbiomics and 
metagenomics5,6 and for variant calling7. There are benchmarks of 
simulators for benchmarking8–11 and software with which to organize 
benchmarking12–17. However, challenges associated with benchmarking 
still exist and some challenges are more difficult to solve than others.

Consider three examples of analyses that are increasingly more 
difficult to benchmark: RNA sequencing (RNA-seq) alignment, bulk 
RNA-seq differential expression, and single-cell RNA-seq analyses. 
Benchmarking alignment workflows is relatively straightforward, as 
one can simply obtain sequencing reads from known genomic loca-
tions (usually through simulation) and assess how closely tools can 
determine the correct alignments. By contrast, a benchmark to assess 
differential expression from bulk RNA-seq is considerably more compli-
cated because it requires realistic variation between samples, including 
biological variation and dependence in gene expression. As this step in 
the RNA-seq workflow is downstream of sequence alignment, it naturally 
inherits the difficulties associated with alignment benchmarking as well. 
Finally, benchmarks of some single-cell RNA-seq analyses must account 
for multiple cell types, populations of cells of each type within an organ-
ism, and variation in cell populations across individuals. Each additional 
step makes it more challenging to generate meaningful data, to evaluate 
results, and even to specify what exactly is the ‘ground truth’ situation.

Despite the importance of omics methods to modern biology, 
researchers routinely face the necessity of performing benchmark-
ing studies that cannot achieve desired benchmarking ideals owing 
to their inherent limitations. On top of these unavoidable limitations, 
a literature review of benchmarking indicates that studies are often 
compromised by avoidable oversights (Box 1), which could be identi-
fied by standardized reporting and subsequently corrected. In this 
Review, we expand on the established guidelines of benchmarking 
by recommending structured reporting of all critical decisions to 
avoid the major pitfalls often encountered and to be explicit about all 
judgement calls and simplifications.

Specifically, we provide a structured form for reporting eleven 
types of critical factors common to most omics benchmarking studies 

https://github.com/itmat/OmicsBenchmarkReport
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evidence for why the results can be extended. Another example is that 
differential expression across very large numbers of replicates, such 
as in biobanks, calls for a dedicated benchmark study, because results 
from smaller sample sizes are not likely to generalize19.

Because most omics methods involve multiple steps in a pipeline, 
benchmarkers often must consider whether to benchmark one specific 
step or several pipeline steps jointly, or even entire pipelines (Fig. 1b–d). 
In addition, they must identify the downstream goals of the benchmark-
ing analysis. Some upstream steps, such as alignment, are common to 
many pipelines and so it may make sense to evaluate that step in isola-
tion. On the other hand, normalization of RNA-seq quantifications is 
invariably tied to the downstream application, typically differential 
expression; it therefore only makes sense to evaluate normalization in 
terms of its impact on differentiation expression. Thus, it is necessary 
to identify any final downstream goals that will come into play in the 
evaluation step (Step 8) and upstream steps that will come into play 
in generating benchmark data (Step 6). This context should be part of 
systematic reporting and we have included tables to this end as part 
of the report template (Supplementary File 1).

Step 2: Tools
Benchmarkers must next delineate exactly which tools and spe-
cific versions are to be included. This should start with a search 
of the literature or community-maintained lists of tools20,21, such as 
the single-cell RNA-tools database for single-cell RNA-seq22. Once an 
exhaustive list has been assembled, each tool should be evaluated for 
inclusion. Given that interpretation also depends on which tools were 
excluded, a table should be maintained that documents a justifica-
tion for each excluded method. Reviewers can then judge whether 
methods were excluded for poor reasons. A suitable justification for 
exclusion might be that they are poorly documented, the software is 
un-runnable, or that the relevance is questionable. However, relevant 
popular software should be included regardless. An example of a poor 
criterion is to include only methods implemented in Python23. If criteria 
are conflicting, then benchmarkers must make judgement calls and 
document their decisions. Benchmarkers should try to reach out to 
the authors of the various tools to clarify issues with documentation 
or running the software. This does not necessarily introduce bias, but 
it factors in the availability of support, which itself is an important 
property of performance in actual use. We refer the reader to a previous 
article for further guidance1.

A final consideration is the neutrality of the benchmarkers with 
respect to the assessed tools. When benchmarkers are themselves 
developers of one or more of the tools, then benchmarks have been 
shown to be less objective24,25. If benchmarkers are not neutral, then 
an alternative approach is to solicit input from the developers of all 
tools to ensure that all are used optimally and to minimize bias. Any 
vested interest in the tools being evaluated should be clearly reported.

Step 3: Ground truth
The usual approach to benchmarking is to obtain data for which the 
truth is known and can be meaningfully compared to the results pro-
duced (either directly or downstream) by the tools. In this step, one 
must try to identify exactly what it is that will be assessed for accuracy. 
This could be the true values of metrics or other inferred biological 
features such as alignments, molecular modifications or the true/false 
status of hypotheses.

The ground truth must be defined in the proper context for the 
benchmarking analysis at hand. For example, if the statistical analysis 

is testing hypotheses at the population level (such as for a differential 
expression analysis), then the ground truth must also be defined at 
the population level. This highlights the fact that benchmarking such 
tests requires using repeated full experiments to assess the variability 
of the evaluation metrics (Step 8), which is not always carried out26,27.

At times, there might be multiple valid choices of ground truth for a 
specific problem. For example, when benchmarking differential expres-
sion methods, the ground truth may be either the true differentially 
expressed gene list or the true effect sizes (fold change in gene expres-
sion). Moreover, ground truth cannot always mirror the output of the 
tool; for example, tools that produce P values have ground truths that are 
the true/false statuses of the hypotheses, not the P values themselves.

In certain cases, there may be no way to obtain a ground truth, but 
benchmarkers should still consider what form it would take if available. 
In Step 8, we discuss what can be done in the case where the ground 
truth is unknown.

Box 1

Common pitfalls in 
benchmarking
Avoidable errors in benchmarks that we have observed include:

 • Using data sets that poorly represent actual experiments (such 
as RNA universal reference samples) (Box 4)

 • Using technical replicates as if they were true biological 
replicates (Box 4)

 • Assuming independence, for example, between different genes 
or between different genomic loci

 • Wrong or overly simplified parametric assumptions (such as 
normality)

 • Generating or assessing data using the same model as one or 
more of the evaluated tools, thus biasing towards those tools

 • Using training data from an evaluated tool as benchmarking data
 • Over-generalizing results without including sufficient data sets 
to evaluate performance in that domain

 • Criticizing non-problematic properties, such as assessing P value 
distributions for uniformity when one-sided tests that lack 
uniformity will still have valid P values

 • Comparing to a ‘gold standard’ data set that was generated 
using one of the tools

 • Presenting results as comprehensive despite critical omissions 
(such as not evaluating an important tool or use case)

 • Overinterpretation or misinterpretation of correlation or other 
evaluation metrics

 • Declaring a winner even if all the tools evaluated failed to meet 
the standards necessary for practical application

 • Wrong choice of data model (such as assuming that differential 
expression happens at the level of one data set and not 
modelling population-level truth)

 • Focusing on intermediate results when downstream results 
are what researchers depend upon (such as only assessing 
quantification accuracy when practical applications require 
differential expression results)
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Step 4: Accuracy of modelling
Once the relevant tools have been identified (Step 2), one must iden-
tify the properties of the benchmarking data that are relevant. For 
example, benchmarking alignment requires realistic reads that cover 
the panoply of relevant alignments. In RNA-seq alignment, it is not 
necessary to factor realistic quantified gene-expression levels into 
simulated data because no tools make use of that information. In fact, it 
might be detrimental to have perfectly realistic data in this application 
because it might obscure important edge cases. Continuing the exam-
ple, benchmarking alignment requires realistic reads, whereas bench-
marking quantification requires realistic samples, and benchmarking 
differential expression requires realistic populations of samples. For 
differential expression analysis, this could include factors ranging 
from read sampling noise, biases from library preparation that may 
vary from library to library, and the actual biological variation in true 
gene expression between replicates and across treatment groups. 
Depending on the experimental setup, these factors vary in importance 
(for example, when there is lower biological variation in cell lines than 
in laboratory animal studies and higher variation in human studies). 
After data are acquired, they should be compared on these criteria to 
real-world data to assess their accuracy (Step 6).

Computational tools often make simplifying assumptions about 
biological data. For example, the BLAST28 sequence aligner assumes 
that positions in the sequences are identically and independently dis-
tributed from their neighbours. Another common aspect of informatics 
tools in general is to make parametric assumptions, such as normality. 
Assumptions are often made necessary by the complexity of the task 
being benchmarked; however, using benchmark data that employ the 
same assumptions as the tools can cause bias and they must be avoided 

unless rigorously justified. Best practice should therefore require using 
data as realistic and complete as possible while clearly documenting 
all simplifying assumptions of the benchmark data as well as the tools.

Step 5: Results stratification
The next step is to identify aspects of the model that vary in practice 
and that probably affect performance of the tools, which we refer to 
as stratification parameters. Examples of stratification parameters 
include the number of replicates, sequencing depth, experimental 
error rates, effect sizes and evolutionary distance. Any such parameters 
should be evaluated by varying them and stratifying the results. As an 
example, when benchmarking differential expression, it should at mini-
mum cover the most common study designs consisting of three to eight 
replicates per group. One advantage of simulated data is that it often 
allows for much greater control over these parameters29. Benchmarkers 
should document any relevant parameters that are omitted, as well as 
the range of values used for the parameters that are addressed. As it 
is generally not feasible to vary factors in all possible combinations, 
benchmark studies should at least vary them individually to assess 
their isolated impact.

Step 6: Data
The easiest mistake to make in benchmarking is to generate misleading 
or meaningless benchmarking data (Box 4). Benchmarking data will be 
used as input to the tools along with any corresponding ground-truth 
values to be used for evaluation. As such, it should reflect the estab-
lished ground truth (Step 3), have realistic properties (Step 4) and allow 
variation of the relevant stratification parameters (Step 5). Step 6 can 
therefore demand the majority of the benchmarker’s effort.

Box 2

Ten steps of benchmarking
Brief descriptions of the ten steps of a typical benchmarking study in 
scienceare provided below. Clarifying details and related issues are 
discussed in the main text.
1. Scope: Delineate exactly what problem is being evaluated, 

including which stages of any pipelines are to be benchmarked 
and whether to include the impact on the outputs of any 
downstream (dependent) analyses.

2. Tools: Determine the specific tools (typically software packages) 
that will be evaluated. This may include combinations of tools or 
entire pipelines.

3. Ground truth: Determine the form of reference or true data 
that will be compared to the output of the tools. In cases 
where no ground truth is available, this step can sometimes be 
circumnavigated.

4. Accuracy of modelling: Identify which properties of real-world 
experiments are important to capture during benchmarking. 
Also identify any properties that will be knowingly unrealistic 
in the benchmark data.

5. Results stratification: Identify any relevant factors that should 
be varied to assess their impact on performance.

6. Data: Create, find or combine data to form the benchmarking 
data set, which is to be used as input to all the tools during 

evaluation along with any reference ground-truth values as 
identified in Step 3. Ensure that the benchmarking data set 
conforms to the properties identified in Step 4 and generate 
multiple data sets, varying the stratification parameters identified 
in Step 5.

7. Execution: Apply each tool to the benchmarking data sets 
created in Step 6 and collect the results. Repeat with varying 
configurations for each tool if necessary.

8. Evaluation: Measure tool performance by one or more evaluation 
metrics that compare the outputs generated in Step 7 to the 
data set’s ground truth. If no ground truth is available, compare 
using other performance criteria, across replications, or with 
other, independent assays.

9. Interpretation: Synthesize the results of the evaluation, 
generating recommendations to users of optimal tools, pipelines, 
configurations or study designs. Identify future directions for tool 
improvement.

10. Maintenance: Share data and software. Enable easy future 
reproduction. Update to reflect new tools, versions or other 
developments in the field.
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Types of benchmarking data
Approaches to generating benchmark data generally fall into four 
categories1,2 (Box 5):

 1. Real-world data (possibly with independent validation)
 2. Simulated data (with well defined ground truth)
 3. Semi-synthetic data (modified real data, or integration of real 

and simulated data)
 4. Controlled experimental data (such as ground truth estab-

lished by spike-ins, which refers to adding known quantities of 
biomolecules of interest into real samples)

It is often best to adopt multiple benchmarking approaches. More-
over, for a given data type, a detailed review should be performed of 
previous benchmarking efforts. Rarely will you be the first to generate 
benchmark data of a given type and benchmarkers should leverage the 
experience of predecessors.

Pipeline structure
Most omics methods are part of a greater analysis pipeline. Bench-
markers may evaluate entire pipelines, in which case their input data 
would need to resemble raw data. However, benchmark studies typi-
cally evaluate just one step in a pipeline and must choose from which 
upstream step of the pipeline to generate benchmarking data, keeping 
in mind the scope identified in Step 1. For example, an RNA-seq differ-
ential expression benchmark study could simulate sequencing reads 
for input into the alignment stage or could simulate a spreadsheet of 
quantified read counts directly.

Generating benchmarking data for the most upstream pipeline 
stage captures artefacts of upstream stages that might not be repre-
sented in data generated directly for the stage of primary interest. For 
example, starting with a spreadsheet of quantified RNA-seq read counts 
does not account for any alignment artefacts that could affect quantifi-
cation. Generating raw reads inherently captures such effects. However, 
this introduces the necessity of processing data through earlier stages 
of the pipeline, which will necessitate choosing algorithms for those 
stages. Ultimately, this could affect the stages of interest, introducing 
yet another dimension of options that needs to be considered.

Fixed stage

a  Benchmarking reporting templates

OutputStage 4Stage 3

EvaluationBenchmark data

Stage 2Stage 1Raw

Fixed staged

c

b

Stages of interest

OutputStage 4Stage 3

EvaluationBenchmark data

Stage 2Stage 1Raw

Fixed stageStages of interest

OutputStage 4Stage 3

EvaluationBenchmark data

Stage 2Stage 1Raw

Fixed stage Stages of interest

Tools

Scope

• Inclusions
• Exclusions
• Justifications

Configurations
• Parameter 
    space structure
• Defaults
• Optimizations

Pipeline structure
• Pipeline stages
• Context
• Inputs

Tools assumptions
Simplifying
assumptions:
• Normality
• Independence

Data sources

Data

• Real-world data
• Simulated (in silico)
• Hybrid (real-world and
    simulated)
• Spike-in or controlled

Data properties Fairness
• Neutrality
• Data independence

Stratification of
factors

Results

Evaluation
• Metrics 
• Context

Limitations
• Assay type
• Species
• Study design
• Sample size
• In-bred, out-
    bred, cell line
• Cuto�s 
    (P or Q values 
    and e�ect sizes)
• E�ect sizes

Reproducibility
• Source code
• Instructions
• Data sets
• Environment

• Number of 
    replicates
• Library size
• E�ect size

• Biological variation
• Technical variation
• Genetic structure
• Genomic loci dependence
• Gene–gene dependence
• Haploid or diploid
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    repeated measures
• Dependence from 
    hierarchical data
• Missing values
• Outliers
• Censored data
• E�ect size
• Error rate or signal-to-
    noise ratio
• Sample size
• Distributional assumptions

Fig. 1 | Overview of benchmarking report template and benchmarking a 
pipeline. a, Summary of the report template components, which are organized 
into three general categories: scope, data and results. Each of the 11 items requires 
the benchmarker to provide specific information detailing relevant lists (tools, 
parameters and so on) and explicit documentation of judgement calls and 
simplifying assumptions. This is designed to reveal common pitfalls that can 
then be addressed where possible and transparently documented otherwise. 
b–d, Typical omics computational methods consist of a pipeline of several stages, 
although benchmark studies may investigate an abbreviated or modified pipeline 
(dashed grey boxes). Benchmarkers must identify which stages of the pipeline 
will be directly benchmarked. All other stages will then either be omitted from 
the benchmark or will be fixed to have just one or a few configurations. Consider the 
following schemes for pipeline benchmarking. b, Evaluate final output from 
the entire pipeline. The choice of procedure for fixed stages influences the results 
of the benchmark analysis. c, Evaluate final output from a partial pipeline. Stages 
that have been omitted still need to be considered as sources of error or bias in 
bench experiments that must be reflected in the benchmark data for a meaningful 
result. d, Evaluate output from an intermediate pipeline stage. Choosing to evaluate 
results directly from an intermediate stage allows precise identification of where 
mistakes arise and could generalize to multiple downstream stages, but evaluation 
of a downstream goal reflects the impact on bench experiments better.
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By contrast, generating benchmarking data directly for later pipe-
line stages generally requires fewer computational resources, mean-
ing that a greater number of iterations can be run to produce a more 
complete picture. Later stages may also be easier to parameterize in 
terms of directly relevant biological variables, such as population mean 
and variance. However, generating data for later steps will require 
simplifications and can easily lead to oversimplification, resulting in 
unreliable conclusions.

The extra effort required to generate multiple benchmark data sets 
of varying data types or at multiple pipeline stages might therefore be 
justified. Ultimately, judgement calls are unavoidable and should 
be transparently documented (Supplementary File 1).

Benchmarking data bias
Biases in benchmarking data can affect the reliability of results. Com-
mon biases are therefore compiled in Supplementary File 1. One bias, 
described in Step 4, arises when tools and benchmarking data rely 
on the same assumptions30. Additionally, it is important to ensure that 
the benchmark data in hand were not used for the development of 
any of the evaluated tools. Data sets well suited to benchmarking are 
also popular among tool developers and may end up being used as 
training data or during tool parameter optimization and fine-tuning 
of algorithms. Benchmarks using these data as reference could then 
favour tools that used those same data sets during development, and 
the benchmark results might not reflect performance in an independ-
ent data set31,32. Therefore, benchmarkers must be selective when using 
established data sets.

Subtler problems can arise when benchmark data are indirectly 
related to the training data. For example, RNA secondary structure 
prediction benchmark studies have often used cross-validation 
techniques33. However, RNA sequences from the same family were 
included in both training and validation data sets, and since secondary 
structure is often conserved, measured performance can be overstated 
compared to actual performance in novel RNA families.

Conversely, benchmarkers should avoid generating data with the 
aid of any of the tools under evaluation, to avoid the benchmark analy-
sis being biased towards that tool. However, generating semi-synthetic 
data may unavoidably require invoking some of the tools under 
evaluation. One possible solution would be to control for this bias by 
employing all tools equally.

Variance within benchmark data sets
If the analysis being benchmarked is statistical in nature (for exam-
ple, any tool that outputs P values), then it is important that variation 
captured in the benchmark data properly reflects variation present 
in real-world data sets34. Examples of too little variation include using 
only technical replicates when benchmarking differential expression 
tools (Box 4), or generating multiple samples by subsampling reads of 
a single data set. By contrast, an example of too much variation would 
be performing differential expression analysis on two or more dra-
matically different conditions, such as mixtures of human, yeast and 
fly samples35, or comparing entirely different tissues that would be 
expected to have too high a level of differentially expressed genes for 
typical normalization procedures36. Instead, the benchmarker should 

Box 3

Frontiers of benchmarking
Emerging trends in modern omics have increased both the challenges 
and opportunities in benchmarking. Three increasingly pervasive 
methodologies in omics are single-cell omics, spatial omics and 
multi-omics, along with combinations of these techniques. Each 
presents an increase in the complexity of benchmarking compared to 
earlier methods. One challenge is simply the explosion of tools and 
objectives that has followed these developments, although improved 
community aggregation of these methods22 and standards for data 
and processing122–124 do help to manage such complexity. More 
fundamentally, it is challenging to generate gold-standard real data 
reference samples for these data types125, yet realistic data simulation 
is complex and benchmarking results are sensitive to the choices 
made in simulation8. In single-cell RNA-sequencing, for example, the 
so-called ‘zero-inflation controversy’ — whether to view zeros as true 
biological signals from unexpressed or low-expressed genes, or as 
missing data that need to be corrected — remains hotly debated and 
the choice influences simulator design and benchmarking results126,127. 
Other single-cell assays, such as in proteomics and whole-genome 
amplification, also suffer from increased missing data compared 
to their bulk equivalents128,129, complicating the generation and 
evaluation of simulated data. The increased complexity of data types 
has necessitated sophisticated simulation of factors, including distinct 
cell types and their connectivity130 and realistic trajectories of cells131. 

Other challenges include the large-batch effects that integrative 
methods must overcome; also, the decision of what counts as a batch 
effect versus true biological difference is context-dependent and 
complicated, further challenging benchmarkers132.

Despite these increasingly growing hurdles, benchmarkers have 
continued to innovate and have demonstrated that data complexity also 
presents increased opportunities for evaluating method performance. 
For example, multi-modal single-cell data (such as data sets that 
include both gene expression and histone-modification assays from 
each cell) have been used to evaluate methodology on a single mode 
using the other mode as a reference, via neighbour similarity133–135. 
Similarly, integrated spatial and single-cell transcriptomics has been 
used to benchmark performance of ceaell interaction methodology 
by incorporating known constraints on the length of cell–cell 
interactions136, and single-cell data has been used to generate realistic 
spatial transcriptomic data132.

A particularly impressive effort is the Open Problems in Single-Cell 
Analysis project, which aims to formalize problems into community 
challenges that promise to become the community benchmarking 
standards for their topics. Another consortium, SpaceTx137, has begun 
to systematize the benchmarking of spatial transcriptomics in brain 
tissues138. These projects collectively show how the benchmarking 
community is growing to meet new challenges.

https://openproblems.bio/
https://openproblems.bio/
https://spacetx.github.io/
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model their data off typical studies that use these tools, beginning by 
generating a list of relevant published experiments. Finally, additional 
relevant factors that must be considered are individual genomic vari-
ation and the diploid nature of mammalian genomes37. In some cases, 
benchmarking data may, however, justifiably benefit from deviating 
in targeted ways from real data (Step 4).

Dependence within samples
Omics studies are multivariate, with many values measured on the 
same biological sample. As mentioned above, benchmarkers must be 
vigilant about identifying potential biases before using benchmarking 
data with independent values within samples. Some differential expres-
sion methods38,39, for example, make empirical Bayes assumptions 
that pool information across genes. It is therefore not appropriate to 
assess these methods without including dependence of gene expres-
sion within each subject. Even more subtly, the Benjamini–Hochberg 
false-discovery rate method, which is widely used to correct for multiple 
testing40, requires that certain dependency assumptions hold41. There-
fore, any tool evaluating false-discovery rate Q values is likely to be 
implicitly operating under this assumption. Benchmarkers must justify 
any decision to not capture dependencies known to exist in real data.

One reason for not including dependence is simply that bench-
markers may be unaware of how to include it. In addition to exist-
ing resources42,43, we provide some guidance on this problem in the 
Supplementary Methods.

Evaluating benchmark data for realism
When not using real-world data, it is necessary to compare them to real data  
sets to assess their realism. For example, simulated single-cell44 
data with an unusually low or high number of zero counts may form a  
poor basis for comparing cell-type clustering methods. Therefore,  
a simulated single-cell transcriptomics data set should be checked to 
make sure zeros occur at a similar rate as in real data sets, as determined 
by standardized tooling where available. A non-exhaustive list of other 
single-cell RNA-seq features to asses includes: library sizes; normaliza-
tion factors; Spearman correlation between cells and between genes; 
and the fraction of cells with zero reads, for each gene45. More gener-
ally, benchmarkers can check for the realistic distribution of param-
eters such as means, variances and the mean–variance relationship46. 
Benchmark papers should present factors like these plotted versus 
real data sets, typically by scatter plot or by graphing the distribu-
tions of both real and synthetic values. If the benchmark data diverge 
substantially from real data by any metrics, benchmarkers should 
document and justify why the discrepancy is unlikely to affect the 
conclusions. There are several tables in the report form (Supplemen-
tal File 1) intended to alert benchmarkers to such discrepancies and 
to document them.

Step 7: Execution
The use of a given tool invariably involves choices regarding configu-
ration parameters, which may have default or recommended values. 
As most users use default configurations, evaluating tools with their 
default settings is important to establish results that reflect com-
mon use. However, this typically provides a very incomplete picture. 
If non-default configurations turn out to be optimal under certain situa-
tions, then benchmarking studies can inform not only which are the best 
tools but can also give guidance on optimal configurations47. The choice 
of which parameters to explore should be made judiciously, consider-
ing whether the parameter is likely to make a large impact, whether it 

is recommended to be adjusted by the tool’s documentation, and by 
contacting the tool’s authors for recommendations.

Informatics tools typically have many parameters, such that the 
parameter space can have many dimensions, and there may be a high 
cost to evaluating even one configuration of the parameters. If the 
parameter space is not too large, it could potentially be explored by 
a grid search, whereby each parameter is discretized sufficiently for 
all combinations of parameters to be evaluated. Otherwise, we rec-
ommend drawing inspiration from the machine learning commu-
nity, which faces similar problems in hyper-parameter optimization. 
See ref. 48 for a comprehensive review, the relevant points of which 
are summarized below.

Bayesian optimization49 is a family of approaches that efficiently 
build a model of performance as a function of the parameters and in 
some forms can be used for arbitrary parameter types (such as dis-
crete and continuous data). Genetic algorithms50 and particle swarm 
optimization51 instead work by optimizing a population of parameter 
settings. To further cut down on resource use, multi-fidelity optimiza-
tion methods can tailor the amount of runtime or data used to evaluate 
each parameter setting according to how likely it is predicted to per-
form well. In the simplest setting, this would entail running methods on 
stripped-down data sets to quickly assess more values before validating 
the best options on full-sized data sets. More advanced approaches, 
such as Hyperband52, dynamically allocate resources to promising 

Box 4

Case study of UHR data
The Stratagene Universal Human Reference (UHR) sample139 is 
usually used to benchmark RNA-sequencing methods. This sample 
comprises a combination of ten human cancer cell lines and was 
created in 2004 for use in the reference channel for two-colour 
microarrays140. The rationale for combining ten cell lines was to 
produce a signal from as many genes as possible. As such, the UHR 
was never intended to represent a real sample for benchmarking; 
it is radically different from anything encountered in practice and 
tumorigenesis is well known to massively scramble transcriptomes, 
making cancer transcriptomics a special case that is difficult to 
extrapolate to any other scenario. A similar reference sample, 
consisting of a combination of ten brain tissues, is provided by 
ThermoFisher. Many publications have used these reference 
samples to benchmark differential expression by sequencing each 
sample several times to generate two groups of replicates139,141–145. 
However, this uses samples with highly artificial transcriptomes 
from radically different tissues, which does not reflect any real-world 
use case. Furthermore, in such a study design the only variation is 
technical and all genes are expressed independently from each 
other. Such data cannot substitute for data with realistic biological 
variation and inter-gene correlations, rendering any benchmark 
guidance derived from them unreliable. Yet, despite these issues, 
this strategy has been frequently used in benchmarking studies. The 
requirement to catalogue all sources of variation and dependence 
in real data and to document whether those dependencies were 
captured, or simplified, and why, would serve to reveal these 
shortcomings and allow them to be corrected before publication.
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settings, using strategies inspired by reinforcement learning. However, 
these may be difficult to implement or limited by data availability in 
omics benchmarking.

Moreover, benchmarkers should consider the over-fitting prob-
lem: that their identified optimal configurations may not be optimal in 
other situations. In all cases, it is best practice to validate performance 
on data sets distinct from the ones used during parameter optimiza-
tion. It is worth noting that parameter optimization is best performed 
on data sets that have low performance with default parameters, as 
these have the largest room for improvement. A subtle place that 
non-neutrality can sneak into is where benchmarkers have differing 
levels of experience with each tool, and so must be careful not to bias 
results towards tools for which they may be better at optimizing the 
parameters1.

Step 8: Evaluation
In the evaluation step, one compares the outputs of the tools to the 
ground truth. At this point, one should have already established 
the downstream goals identified in Step 1, if any, and whether to 
evaluate the direct outputs of the benchmarked pipeline steps or the 
downstream results of these steps, or both for completeness (Fig. 1b–d).

Evaluation should be of tool performance in terms of the needs 
and expectations of users, as opposed to more theoretical aspects 
such as model fit. A tool might be known to be a weak theoretical model 
of the data, but the benchmarker’s job is first to assess whether that 
affects its performance. A simple, unrealistic model could outper-
form models with superior theoretical foundations, perhaps owing 
to overfitting or a lower power of the more complex model. There-
fore, all evaluation criteria should be directly relevant to end users. 
We emphasize that it remains critical that the benchmark data are as 
realistic as possible (Step 6) to rigorously test all these aspects. Once 
deficiencies in performance have been identified, then it might be logi-
cal to further identify weaknesses in the model to prioritize continued 
development of the tool. However, this is not strictly necessary for a 
benchmarking study to be informative to the user; it is simply value 
added for the developer.

Evaluation metrics
The choice of evaluation metric depends upon the output of the tools 
being compared and is a critical and delicate decision. We discuss 
common situations below and in Table 1.

Assessing quantitative values. Quantitative outputs can be directly 
compared to known true values of the benchmark data. A popular met-
ric for comparison is correlation (either Spearman or Pearson) between 
the estimated and the true values. Correlation, however, has well known 
limitations53 and can be very misleading, so it is generally preferable 
to use a metric that incorporates an absolute measure of the error. 
Depending on the context, choices include the mean absolute devia-
tion from the truth (MAD, defined as the mean of |estimated – true|) 
or a normalized form as the mean absolute relative deviation (MARD, 
defined as the mean of |estimated – true|/|estimated + true|). Scatter 
plots of estimated versus true values are also helpful, as are MA plots 
(also known as Bland–Altman plots)54, which show the log ratio ver-
sus the mean of the estimated and true values. These can be used to 
compare the similarity of two estimates when no true values are known.

Assessing P values. Many tools perform statistical tests of null hypoth-
eses and report P values. These are used to reject a set of non-null 
hypotheses with a controlled type I error rate. Therefore, any tool 
reporting P values should be assessed for whether it properly con-
trols the type I error rate, in which case it is termed conservative or 
super-uniform55,56. It is critical to focus evaluation on values below 
and up to the P value cutoffs considered meaningful in practice (Sup-
plementary Methods). Next, the tool should be assessed for the type II  
error rate by computing its power: the ability to reject the null when 
given non-null data. This can be computed from simulation at a parti-
cular effect size, but it can also be qualitatively assessed by running  
all tools on real-world data (even without known ground truth). If tools 
do not have conservative P values, then care must be taken in assessing 
power34, and we recommend computing power at a type 1 error rate 
using the observed true error rate rather than the reported (inaccurate) 
rate. This provides a fair power comparison for methods regardless of 
their success in controlling P values. We detail how to assess P value 

Box 5

Benchmarking data types
Benchmarking data can be categorized into four main types.

Real-world data
In some cases, tool performance can be evaluated on real-world 
data straight from a true representative experiment, in which the 
ground truth is determined by other ‘gold standard’ validation 
assays. Typically, the gold-standard assay will be slower and/or more 
expensive. For example, the PCR is often taken as a gold-standard 
assay for microarrays or RNA sequencing146–148, and Sanger sequencing 
is accepted as the gold standard for Illumina sequencing149,150.

Simulated data
Simulated data are generated de novo with a statistical model, with 
predetermined ground truth and configurable parameters. This 
typically involves making parametric assumptions about the nature 
of the data, but also provides the greatest level of control over 
all known aspects of the data. It is, however, easy to oversimplify 
when simulating data (such as independent normally distributed 
expression data). The time required to plan and implement a realistic 
simulation will usually be considerable, but in domains such as 
RNA sequencing, mature off-the-shelf simulators are available75,151–153.

Semi-synthetic methods
Semi-synthetic data is generated using both real-world and 
simulated aspects. This includes a spectrum of data-generation 
methods with varying amounts of simulated and real content, 
including permutation or down-sampling of real data sets, the use 
of real data sets to determine parameters for simulation, and in 
silico spike-ins or spike-outs on top of real-world background data.

Spike-in or controlled experimental data
Spike-in refers to adding known quantities of biomolecules of 
interest into real samples.

These data types are generated using the experimental (bench) 
pipeline but with some aspects controlled to create known effects. 
Sometimes ‘plasmode’ is used to refer to methods that could fall 
under semi-synthetic methods or controlled experimental data154.
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distributions for conservativeness and power in the Supplementary 
Methods and suggest some existing libraries57. Benchmarkers should 
also consider alternatives to directly evaluating P values, such as 
receiver operating curves58, which use only the ordering of P values 
without their exact values.

Although evaluating the uniformity of P value distributions has 
uses outside benchmarking, such as diagnosing model fit or estimating 
the total number of non-null tests59, we recommend against comparing 
methods by this criterion during benchmarking. Evaluating P value 
distributions is valid for considerations of conservativeness and power 
but non-uniformity under the null in and of itself does not necessarily 
render a method invalid. Non-uniformity can arise in many situations 
that are not necessarily problematic, including corrections for multiple 
hypotheses60, composite null hypotheses (which includes one-sided 
tests)61, and when analysing discrete data. Therefore, judging tools by 
(non-)uniformity under the null could incorrectly penalize ones that 
have applied valid procedures such as these. Instead, evaluating by 
power and conservativeness ensures that any problematic deviations 
from uniformity are identified without unjustified penalties.

False-discovery-rate Q values are never expected to follow a uni-
form distribution and should not be assessed as if they were P values. 
Instead, compare the reported Q value to the actual fraction of positive 
results that were false positives (Supplementary Methods).

Assessing genomic regions. Many omics tools identify regions 
of the genome, such as peak callers for ChIP–seq or assay for 
transposase-accessible chromatin with sequencing (ATAC-seq) or 
de novo annotation tools for transcripts. The simplest metrics check 
overlap with true regions (such as complete containment of one true 
region in the inferred region, or vice versa, or having at least one base 
in common). Alternatively, exact matches can be required. The appro-
priate measure depends on the downstream goals. For ChIP–seq, it is 
unrealistic to expect exact matches of peaks because the true regions 
are insufficiently well defined. A less strict metric requiring overlap of 
at least one base would be more appropriate. In contrast, annotation  
of transcribed regions demands higher resolution because metrics 
need to assess the exact accuracy of splice sites. There exist tools to 
aid in classifying annotation accuracy62.

Benchmarking from real experimental data
Although simulated or controlled experiments with a known truth are 
the most straightforward way to assess the performance of a tool, there 
is substantial room to directly use real experimental data that lacks a 
known truth. Instead, one can search for surrogates of accuracy. Con-
sider ChIP–seq peak calling; benchmarks have compared called peaks 
to a wide range of alternative sources of information31. These include 
manual inspection63, enrichment for known binding motifs64, expressed 
genes from RNA-seq (for H3K36me3 peaks)65, promoter regions of 
expressed genes (for H3K4me3 peaks)65, genome-wide association 
study single-nucleotide polymorphisms of an associated phenotype66, 
and quantitative PCR validation67–70.

Another approach is to find the ground truth at another level of 
data analysis. For example, when benchmarking single-cell assays, it is 
often impossible to obtain ground-truth values on the same set of cells 
assayed owing to the destructive nature of the experiments. However, 
it may be possible to obtain ground-truth values on a similar popula-
tion of cells. Although that does not provide cell-level ground-truth 
values, instead properties of the distribution can be assayed for 
correctness71. Moreover, benchmarks may check for conservation 

of results across species72–74, which is often indicative that a tool has 
identified biologically relevant results.

Last, most tools can be assessed for consistency across replicated 
experiments. However, tools may produce consistent false positives. 
Nonetheless, consistency can be one aspect of a comprehensive 
benchmark analysis.

Assessing specific stratification parameters
Considering the stratification parameters identified in Step 5, bench-
markers should then stratify results by the values of these parameters. 
The goal here is to determine whether subcases or specific situations 
have substantially different performance. In such cases, distinct reco-
mmendations can be formulated for users of different situations and 
the failure modes of tools can be identified.

Step 9: Interpretation
Benchmarkers would like to provide universal guidelines based on 
benchmarking observations; however, in omics almost every use case 
is a special case, and it is not feasible for one benchmark to assess all 
the ways the tools in question will be applied. Although it is tempting 
to overgeneralize results, conclusions must reflect the limitations in 
scope from Step 1, the realities of the benchmarking data in terms of 
factors such as species and study designs, and the evaluation criteria. 
Readers should be assumed to be sophisticated users who can evalu-
ate nuances and make special considerations for how the results apply 
to their case, at least to a reasonable level. For example, it is common to 
evaluate methods only at specific Q value thresholds, often limited 
to 0.05 or 0.01. However, in contrast to P values, Q value cutoffs used 

Table 1 | Evaluation metrics

Value type Examples Evaluation metrics: 
comparing to truth

Continuous Abundance, expression Mean absolute deviation; 
correlation (Spearman, 
Pearson)

Binary Null hypothesis rejection AUROC112; true positives; 
false positives; F-metric; 
Matthews correlation 
coefficient113

Categorical Diploid genotyping Confusion matrices; 
Cramer’s V114

Genomic region Peak calling, annotation Number of bases overlap; 
any overlap at all; exact 
matches of end point

Sequence or motif Motif calling Shannon entropy; 
Hamming distance; 
Levenshtein distance, 
BLAST score

P value Differential expression, 
GWAS

Conservative on nulls; 
power on non-nulls

Clusters Cell-type clustering Rand index115; mutual 
information; V-measure; 
Fowlkes–Mallows116

Ranked lists ChIP–seq peak list Irreproducible discovery 
rate69; sequential rank 
agreement117

AUROC, area under the receiver operating characteristic; BLAST, basic local alignment 
search tool; ChIP–seq, chromatin immunoprecipitation followed by sequencing; GWAS, 
genome-wide association study.
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in practice are often higher than 0.05, so the benchmark may have 
little relevance to how the tool is used in practice. Requiring authors 
to document and justify such decisions enables readers to efficiently 
identify such relevant limitations.

Benchmarkers should be prepared to conclude that all tools per-
form approximately equally well, that no tool performs adequately 
at the measured task, or that the benchmarking results give no clear 
guidance. For example, it had arguably been the case for RNA-seq 
isoform level structure inference that none of the available methods 
were viable, at least through 2015 (ref. 75). In a crowded field, identify-
ing a singular winner may be less important than identifying the clear 
underperformers. Moreover, benchmark studies have uses beyond 
providing actionable recommendations, such as aiding tool developers 
by identifying weaknesses and providing future directions for the field.

Perhaps the most challenging aspect of benchmarking arises 
when there are conflicting results, such as when two critical evaluation 
metrics rank tools in different orderings or when one tool outperforms 
in specificity but underperforms in sensitivity. Again, this calls for 
presenting all the results so that readers can consider all the factors 
for their specific needs (reviewed in more depth elsewhere1).

Step 10: Maintenance
Although the sharing of code and input data is increasingly common, 
a recent review found that benchmarks were lacking in extensibility 
and interoperability76. Benchmarking studies often become outdated 
in rapidly evolving fields. Therefore, benchmarking is never done, but 
instead requires ongoing efforts and, crucially, necessitates regular 
updates from the benchmarking community as new methods or data 
become available. Turning benchmarking into regularly scheduled 
competitions has driven methods development via projects such as 
CASP77. This reinforces the impact that all benchmarking efforts can 
have if they are made fully reusable and kept up to date.

It is critical that benchmarkers facilitate reuse by creating repro-
ducible and maintainable benchmark studies. The use of Docker78,79 
or similar containerization technology is often recommended for this 
purpose; however, it remains easy to fail to achieve a reproducible or 
maintainable benchmark analysis even with containerization. We pro-
vide some advice regarding containerization specific to benchmarking 
in Supplementary Methods Note 3.

As links to private websites can go offline80,81, shared data and 
code is best done through public data repositories. However, many 
public data repositories such as the Gene Expression Omnibus82,83 
accept only experimental, rather than simulated, data. Instead, generic 
repositories, which include Zenodo or figshare, can be used.

Benchmarking frameworks
There is growing appreciation that benchmarking needs centralized 
platforms to enable coordinated and continuous updates of bench-
marking studies. Several groups have taken up this challenge, and 
such platforms are being adopted84–87, although their use remains 
quite limited76. We review here the state of these systems and other 
benchmarking software (Table 2). The most ambitious frameworks 
provide centralized infrastructures for running benchmarks with 
conti nuously updated results and allow submission of new or updated 
tools or data sets. Notable examples of these are OpenEBench16,17 and 
Omnibenchmark15. Although such systems bring benchmarks closer 
to the ideal of a continuously updated, reproducible benchmark, we 
speculate that these platforms have not gained more traction with 
benchmarkers because the benefits do not go to benchmarkers 

themselves. Instead, the benefits they provide are primarily for the 
broader community, but it is the benchmarker who decides whether 
to use these platforms. The adoption of practices that provide benefits 
only to others is not unprecedented, however; think of the sharing of 
data and code, at least when incentivized by community expectations 
and journal requirements. Another important area for future develop-
ment is the organization and presentation of benchmarking results 
on these platforms, given that continuously updated benchmarking 
efforts cannot depend upon traditional, static publications to make 
the results available. These platforms must make sure to highlight not 
only performance but also the important context documenting the 

Table 2 | Benchmarking frameworks and libraries

Framework Scope Features

OpenEBench16,17 General Continuous updates, 
containerization, platform, 
community contributions

Omnibenchmark15 General Continuous updates, 
containerization, 
provenance tracking, 
platform, community 
contributions

SummarizedBenchmark12 General Pipelining, organization 
and structure

pipeComp13 General Pipelining, organization 
and structure

DSC14 General Pipelining, organization 
and structure

dynverse94 scRNA-seq 
trajectory inference

Data sets, evaluation, 
visualization, web app  
interface

iCOBRA57 Feature ranking, 
binary classification

Data sets, evaluation, 
visualization, web 
app interface

compcodeR92 RNA-seq differential 
expression

Simulation, evaluation, 
visualization

BDTcomparator118 Binary classification Evaluation

rnaseqcomp93 RNA-seq 
quantification

Data sets, evaluation, 
community contributions

LEMMI89 Metagenomics Data sets, evaluation, 
pipeline, continuous, 
community contributions, 
containerization

LEMORTHO90 Orthologue 
delineation

Data sets, evaluation, 
pipeline, continuous, 
community contributions, 
containerizations

IBRAP119 scRNA-seq Data sets, evaluation, web 
app interface

scRNA-IBT120 scRNA-seq 
imputation

Containerization, pipeline, 
plugins

Spotless121 Cell-type 
deconvolution

Pipeline, containerization, 
simulations

RNAontheBENCH26 RNA-seq Data sets, evaluation

SQANTI62 Transcript 
annotation

Evaluation

RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA-sequencing.
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why and how of the benchmark (which can be achieved by including 
the report template provided in Supplementary File 1) so that readers 
can make informed decisions.

Another area in which benchmarks could improve is to have more 
systematic reuse of components of benchmarking and better organized 
benchmark software76. There are software frameworks12,13 that aim to 
provide organization and standardization for general benchmarking 
without providing infrastructure to run the benchmarks. There are also 
many libraries and frameworks covering more specific benchmarking 
tasks, typically benchmarking of specific topics58,88–94. One example 
is dynverse, for benchmarking single-cell trajectory inference. This 
provides an extensive collection of data sets and evaluation metrics 
for this domain and has seen repeated use as a means of benchmarking 
new methods95–98. Another success story is iCOBRA57, which performs 
evaluations of methods that produce P values or other scores on a list 
of features and has been widely used99–105. By restricting their scope, 
these projects can address some of the most challenging aspects of 
benchmarking: generating meaningful data sets and evaluations. This, 
paradoxically, may mean that their limited scope has driven adoption 
by providing more direct benefits to the benchmarkers relative to more 
general frameworks.

Conclusions and future perspectives
High-quality benchmarking is critically important for accurate data 
analysis but produces several challenges. For example, simulating  
a data type for a particular analysis requires a deep understanding of the 
data type and nimble modelling skills29. To achieve meaningful bench-
marking of RNA-seq differential expression analysis through simula-
tion, for example, one must simulate a population of transcriptomes, 
ideally from a population of diploid genomes across multiple subpopu-
lations. Moreover, the various effects and properties of the population 
parameters must be adjustable to enable their impact on the analysis 
to be assessed. These are increasingly challenging tasks in statistical 
and computational modelling as ever more complex omics methods 
continue to be developed. For example, there are now multi-omics 
benchmarks106–111 that have had to combine the difficulties of multiple 
data types (Box 3). Therefore, there is a strong and increasing need for 
more support and more groups dedicated to methods evaluation, who 
are not themselves methods developers and who do not have other 
conflicts of interest that might influence their results.

A cultural shift is also required to support the ongoing maintenance 
and repetition of benchmarking studies. Long-term benchmarking 
efforts require deceptively large investments of time and resources to 
sustain and are often undervalued because they are perceived to lack 
‘novelty’, rendering these essential tasks less appealing to researchers. 
As a solution, the community could promote this critical maintenance 
work: journals could accept short-form notes and letters reporting regu-
lar benchmarking updates, and funding agencies and hiring committees 
could recognize ongoing maintenance efforts with funding mecha-
nisms for the maintenance and updating of benchmarks. Furthermore,  
a new generation of benchmarking platforms, such as OpenEBench16,17 
and Omnibench15, are working to lower the costs of such maintenance.

An overarching theme in omics benchmarking is that it is not 
possible to formalize guidance that applies generally. Every study is a 
special case whose analysis requires a deep understanding of a given 
data type at multiple levels. As such, one should proceed with caution 
when conducting a comprehensive benchmarking study, given that 
it could influence the choices of methodology for a whole research 
community.

The field of benchmarking in modern biology is not in its infancy. 
We have reviewed the literature to identify important lessons and 
critical areas for improvement moving forward. There is an ongoing 
need to continually raise the bar in benchmarking and to improve the 
value and interpretability of our studies. Foremost among our recom-
mendations is to establish standards that include the comprehensive 
documentation of informed decisions and judgement calls. We have 
developed what should be taken as a first attempt at such reporting 
standards, which includes (in eleven sections) a comprehensive list of 
potentially relevant tools with notes for each one on why it was or was 
not included, and comprehensive lists of all sources of dependence 
in real data and notes for each one on how it was accounted for, or a 
justification for why and how it was simplified. These lists will reveal 
avoidable shortcomings in benchmarking studies so that these can be 
corrected prior to publication and will also help readers to understand 
the applicability of the study. This report format could be refined into 
specific and comprehensive reports for particular benchmarking 
domains. For example, a differential expression benchmarking report 
would include tables of known properties of real-world data, such as 
dependence between genes across biological replicates. Benchmark-
ers can then simply indicate whether the factors were captured in 
the model without having to determine them anew each time, thus 
mitigating author biases or oversights. The establishment of these 
standards would follow a period of community feedback. The intro-
duction of such systematic reporting in benchmarking could have a 
profound effect on the effective translation of benchmarking studies 
into everyday practice. The inclusion of such reports could ultimately 
become a requirement enforced by journals.

Published online: xx xx xxxx
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